Optimization of functionals

D. González–Sánchez¹

Fall 2025

¹Secihti and Cinvestav-IPN, Mexico City, Mexico

Contents

1	Basics of optimization in \mathbb{R}^n			
	1.1	Necessary conditions	1	
		Minimization of convex functions		
	1.3	Lagrange multipliers	4	
	1.4	Inequality constraints		
	Exer	rcises	7	
2	Semicontinuous functions			
	2.1	Existence of minimizers	12	
	2.2	Ekeland's variational principle	13	
		rcises		
A	Con	vexity in \mathbb{R}^n	18	
		Continuity of convex functions	18	
		Convex functions of class C^2		
		Separation theorems		
		rcises		
Re	feren	CAS	23	

Chapter 1

Basics of optimization in \mathbb{R}^n

1.1 Necessary conditions

Definition 1.1. Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}$. The point $\hat{x} \in X$ is a **local minimizer** of f if there is a ball $B_{\delta} = \{x \in \mathbb{R}^n \mid |x - \hat{x}| < \delta\}$ around \hat{x} such that

$$f(\hat{x}) \le f(x) \quad \forall x \in B_{\delta} \cap X.$$

The proof of the following proposition follows from the latter definition.

Proposition 1.2. Let X be an open subset of \mathbb{R}^n and $f: X \to \mathbb{R}$. If $\hat{x} \in X$ is a local minimizer of f and there exists the directional derivative

$$D_{v}^{+}f(\hat{x}) := \lim_{t \downarrow 0} \frac{f(\hat{x} + tv) - f(\hat{x})}{t},$$

for some $v \in \mathbb{R}^n$, $v \neq 0$, then

$$D_{v}^{+}f(\hat{x}) \geq 0.$$

If, in addition, there exists the two-sided directional derivative

$$D_{\nu}f(\hat{x}) := \lim_{t \to 0} \frac{f(\hat{x} + t\nu) - f(\hat{x})}{t},$$

then $D_{\nu}f(\hat{x})=0$.

Corollary 1.3. Let X be an open subset of \mathbb{R}^n . If $\hat{x} \in X$ is a local minimizer of the differentiable function $f: X \to \mathbb{R}$, then

$$\nabla f(\hat{x}) = 0.$$

1.2 Minimization of convex functions

The subset X of \mathbb{R}^n is **convex** if for each $x, y \in X$ and $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)y \in X$$
.

Definition 1.4. Let X be a convex subset of \mathbb{R}^n . The function $f: X \to \mathbb{R}$ is called

(a) **convex** if for every $x, y \in X$ and $\lambda \in [0, 1]$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y); \tag{1.1}$$

(b) **strictly convex** if the inequality is strict for $x \neq y$ and $\lambda \in (0, 1)$.

Proposition 1.5. Let X be a convex subset of \mathbb{R}^n . If $f: X \to \mathbb{R}$ is a convex function, then any local minimizer is a global minimizer.

Proof. Let \hat{x} be a local minimizer of f, thus

$$f(\hat{x}) \le f(y), \quad \forall y \in X \cap U,$$

where *U* is some open subset of \mathbb{R}^n . If $x \in X$, then there is $y \in x \cap U$ and $0 < \lambda < 1$ such that

$$y = \lambda \hat{x} + (1 - \lambda)x.$$

Then

$$f(\hat{x}) \le f(y)$$

$$\le \lambda f(\hat{x}) + (1 - \lambda)f(x),$$

that is, $(1 - \lambda) f(\hat{x}) \le (1 - \lambda) f(x)$. Therefore $f(\hat{x}) \le f(x)$ for each $x \in X$.

Lemma 1.6. Let $f: S \to \mathbb{R}$ be a convex function, $S \subseteq \mathbb{R}^n$ convex, and $a \in S$. Set, for $x \in S$,

$$x_{\lambda} := \lambda x + (1 - \lambda)a, \qquad \lambda \in [0, 1]. \tag{1.2}$$

Then, for every $0 < \lambda < \lambda' \le 1$,

$$\frac{f(x_{\lambda}) - f(a)}{\lambda} \le \frac{f(x_{\lambda'}) - f(a)}{\lambda'}.$$
(1.3)

Further, if f is strictly convex and $x \neq a$, then

$$\frac{f(x_{\lambda}) - f(a)}{\lambda} < \frac{f(x_{\lambda'}) - f(a)}{\lambda'}, \qquad 0 < \lambda < \lambda' \le 1. \tag{1.4}$$

Proof. We only show the inequality when f is strictly convex, the other one is totally analogous. Pick $x, a \in S$ with $x \neq a$. Then, for $0 < \lambda < \lambda' \le 1$,

$$f\left(\frac{\lambda}{\lambda'}x_{\lambda'} + \left(1 - \frac{\lambda}{\lambda'}\right)a\right) < \frac{\lambda}{\lambda'}f(x_{\lambda'}) + \left(1 - \frac{\lambda}{\lambda'}\right)f(a)$$

since $0 < \lambda/\lambda' < 1$ and $x_{\lambda'} \neq a$, where $x_{\lambda'}$ is given by (1.2). Thus

$$\lambda'[f(x_{\lambda}) - f(a)] < \lambda[f(x_{\lambda'}) - f(a)], \qquad 0 < \lambda < \lambda' < 1.$$

because $(x_{\lambda'})_{\frac{\lambda}{\lambda'}} = x_{\lambda}$, with the notation (1.2).

Lemma 1.7. Let $f: S \to \mathbb{R}$ be a C^1 function, where S is an open and convex subset of \mathbb{R}^n . The function f is convex in S if and only if

$$f(x) - f(a) \ge \langle Df(a), x - a \rangle \quad \forall x, a \in S.$$
 (1.5)

Likewise, f is strictly convex if and if the inequality is strict for every $x \neq a$ *.*

Proof. Suppose that f is convex in S. Then for every $x, a \in S$ and $\lambda \in (0, 1]$

$$f(x) - f(a) \ge \frac{f(a + \lambda(x - a)) - f(a)}{\lambda}.$$

Letting $\lambda \to 0^+$, we obtain (1.5).

Conversely, let $x, a \in S$ and $\lambda \in [0, 1]$. Define $x_{\lambda} := \lambda x + (1 - \lambda)a$, then (1.5) yields

$$f(x) - f(x_{\lambda}) \ge \langle Df(x_{\lambda}), x - x_{\lambda} \rangle,$$

 $f(a) - f(x_{\lambda}) \ge \langle Df(x_{\lambda}), a - x_{\lambda} \rangle.$

Therefore

$$\lambda[f(x) - f(x_{\lambda})] + (1 - \lambda)[f(a) - f(x_{\lambda})] \ge \langle Df(x_{\lambda}), \lambda(x - x_{\lambda}) + (1 - \lambda)(a - x_{\lambda}) \rangle.$$

Since $\lambda(x - x_{\lambda}) + (1 - \lambda)(a - x_{\lambda}) = 0$, it follows that

$$\lambda f(x) + (1 - \lambda)f(a) \ge f(\lambda x + (1 - \lambda)a).$$

We now show the second equivalence. Suppose first that f is strictly convex and pick $x, a \in S$ with $x \ne a$. By (1.4), with $\lambda' = 1$,

$$\frac{f(a+\lambda(x-a))-f(a)}{\lambda} < f(x)-f(a), \qquad 0 < \lambda < 1,$$

then

$$f(x) - f(a) > \inf_{0 < \lambda < 1} \frac{f(a + \lambda(x - a)) - f(a)}{\lambda}$$
$$= Df(a) \cdot (x - a).$$

For the converse, pick $x, a \in S$, with $x \neq a$. Then, for each $\lambda \in (0, 1)$,

$$f(x) - f(x_{\lambda}) > Df(x_{\lambda}) \cdot (x - x_{\lambda}),$$

 $f(a) - f(x_{\lambda}) > Df(x_{\lambda}) \cdot (a - x_{\lambda}),$

since $x_{\lambda} \neq a$. Hence, as above,

$$\lambda f(x) + (1 - \lambda)f(a) > f(\lambda x + (1 - \lambda)a), \quad \lambda \in (0, 1).$$

This completes the proof.

Theorem 1.8 (First–order necessary and sufficient condition). Let X, U be sets in \mathbb{R}^n such that $X \subseteq U$, X is convex, and U is open. Let $f: U \to \mathbb{R}$ be differentiable on U and convex on X. Then x^* is a global minimizer of f in X if and only if

$$Df(x^*) \cdot (x - x^*) \ge 0 \quad \forall x \in X. \tag{1.6}$$

Proof. Suppose first that x^* is a minimizer of f and pick any $x \in X$. Since f is differentiable, there exists $D_v^+ f(x^*) = Df(x^*) \cdot v$, with $v = x - x^*$; by Proposition 1.2 $Df(x^*) \cdot (x - x^*) \ge 0$. Conversely, if (1.6) holds, then by Proposition 1.7,

$$f(x) \ge f(x^*) + Df(x^*) \cdot (x - x^*) \ge f(x^*) \quad \forall x \in X.$$

Therefore x^* is a global minimizer of f in X.

1.3 Lagrange multipliers

Theorem 1.9 (Lagrange). Let $f: U \to \mathbb{R}$ and $g: U \to \mathbb{R}^m$ be of class C^1 , where U is an open subset of \mathbb{R}^n and m < n. If \hat{z} is a local minimizer to problem

$$\min_{z \in U} \{ f(z) \mid g(z) = 0 \}$$
 (1.7)

and rank $(Dg(\hat{z})) = m$, then there is a unique $\hat{\lambda} \in \mathbb{R}^m$ such that

$$Df(\hat{z}) = \hat{\lambda}^{\mathsf{T}} Dg(\hat{z}). \tag{1.8}$$

Proof. Let us rewrite the optimization problem as

$$\min_{(x,y)\in U} \{ f(x,y) \mid g(x,y) = 0 \}$$

where $x \in \mathbb{R}^{n-m}$ and $y \in \mathbb{R}^m$. Since $\operatorname{rank}(Dg(\hat{x},\hat{y})) = m$, where $(\hat{x},\hat{y}) = \hat{z}$ is the given local minimizer, we can assume that the m rows of $D_yg(\hat{x},\hat{y})$ are l.i.—otherwise the variables can be reordered. Then by the Implicit Function Theorem, there exists a local implicit C^1 function h such that g(x,h(x)) = 0, with $h(\hat{x}) = \hat{y}$, and

$$Dh(\hat{x}) = -[D_y g(\hat{x}, \hat{y})]^{-1} \cdot D_x g(\hat{x}, \hat{y}).$$

On the other hand, \hat{x} is a local minimizer of the function F(x) := f(x, h(x)) and so $DF(\hat{x}) = 0$. By the Chain Rule, $D_x f(\hat{x}, h(\hat{x})) + D_y f(\hat{x}, h(\hat{x})) \cdot Dh(\hat{x}) = 0$, that is,

$$D_{x}f(\hat{x},\hat{y}) = D_{y}f(\hat{x},\hat{y}) \cdot [D_{y}g(\hat{x},\hat{y})]^{-1} \cdot D_{x}g(\hat{x},\hat{y}).$$

The result follows by defining $\hat{\lambda}^{\top} := D_y f(\hat{x}, \hat{y}) \cdot [D_y g(\hat{x}, \hat{y})]^{-1}$.

Proposition 1.10. Let $f: U \to \mathbb{R}$ and $g: U \to \mathbb{R}^m$ be differentiable, where U is an open and convex subset of \mathbb{R}^n . Suppose that \hat{x} satisfies (1.8) for some $\hat{\lambda} \in \mathbb{R}^m$ and the function

$$x \mapsto f(x) - \hat{\lambda}^{\top} g(x), \qquad x \in U,$$

is convex, then \hat{x} is a global minimizer to problem (1.7).

Proof. It follows from Theorem 1.8.

 \Diamond

1.4 Inequality constraints

Let *X* denote a linear space an let *A* be a nonempty convex subset of *X*.

Suppose $f_j: X \to \mathbb{R}$ is convex, for j = 0, 1, ..., n. In this section, we consider the **convex minimization problem**

$$\inf_{x \in A \cap F} f_0(x),\tag{1.9}$$

where

$$F := \{ x \in X \mid f_1(x) \le 0, \dots, f_n(x) \le 0 \}.$$

Remark 1.11. Let $f: X \to \mathbb{R}$ be a continuous convex function, where $X = \mathbb{R}^n$. Put

$$F = \{x \in X \mid f(x) \le 0\}$$

and

$$G = \{x \in X \mid f(x) < 0\}.$$

Then G is open, because f is continuous, and $G \subseteq F$, hence

$$G \subseteq int(F)$$
.

In general, $int(F) \neq G$. Take, for instance, $f \equiv 0$. Nonetheless, if $G \neq \emptyset$, then

$$int(F) = G$$
.

Indeed, let $x \in \text{int}(F)$ and $x_0 \in G$. Then there exists $0 < \varepsilon < 1$ such that

$$y := x + \varepsilon(x - x_0) \in F$$
.

Observe that $f(y) \le 0$, $f(x_0) < 0$, and

$$x = (1 - \lambda)y + \lambda x_0,$$

where $\lambda = \frac{\varepsilon}{1+\varepsilon} > 0$. Because f is convex, we have

$$f(x) \le (1 - \lambda)f(y) + \lambda f(x_0) < 0$$

which proves that $x \in G$. Therefore $int(F) \subseteq G$, whenever $G \neq \emptyset$.

Definition 1.12. The problem (1.9) is said to satisfy the **Slater's condition** if

$${x \in A \mid f_1(x) < 0, \dots, f_n(x) < 0} \neq \emptyset.$$

In the following theorem, we use the **Lagrange function** $\mathcal{L}: X \times \mathbb{R}^{n+1} \to \mathbb{R}$ which is given by

$$\mathcal{L}(x,\lambda_0,\ldots,\lambda_n) := \lambda_0 f_0(x) + \ldots + \lambda_n f_n(x).$$

Theorem 1.13 (Kuhn–Tucker). *Suppose* $\overline{x} \in A \cap F$.

(a) If \bar{x} is a solution to the convex minimization problem (1.9), then there exist nonnegative scalars $\bar{\lambda}_0, \ldots, \bar{\lambda}_n$, not all zero, such that

$$\overline{\lambda}_j f_j(\overline{x}) = 0, \qquad 1 \le j \le n.$$
 (1.10)

and

$$\mathcal{L}(\overline{x}, \overline{\lambda}_0, \dots, \overline{\lambda}_n) = \min_{x \in A} \mathcal{L}(x, \overline{\lambda}_0, \dots, \overline{\lambda}_n)$$
 (1.11)

If, in addition, the Slater's condition holds, then $\overline{\lambda}_0 > 0$.

(b) Assume that (1.10) and (1.11) hold with $\overline{\lambda}_j \geq 0$, $1 \leq j \leq n$, and $\overline{\lambda}_0 = 1$. Then \overline{x} is a solution to problem (1.9).

Proof. (a) Let C be the set of elements $(y_0, y_1, \dots, y_n) \in \mathbb{R}^{n+1}$ that satisfy

$$f_0(x) - f_0(\overline{x}) < y_0, \ f_1(x) \le y_1, \dots, \ f_n(x) \le y_n,$$

for some $x \in A$. Then C is convex, because A and the functions f_0, \ldots, f_n are convex. Since $\overline{x} \in A \cap F$,

$$y_j > 0, \ 0 \le j \le n, \quad \Rightarrow \quad (y_0, \dots, y_n) \in C.$$
 (1.12)

In addition, $0 \notin C$. Indeed, if $0 \in C$, then there would exist $x' \in A$ such that $f_0(x') < f_0(\overline{x})$ and $x' \in F$. This is a contradiction because f attains its minimum at \overline{x} .

By Theorem A.6, there is a hyperplane that separates C and $\{0\}$, that is, for some $\overline{\lambda} = (\overline{\lambda}_0, \dots, \overline{\lambda}_n) \neq 0$

$$\langle \overline{\lambda} \mid y \rangle \ge 0 \qquad \forall y \in C.$$

From (1.12), we conclude that $\overline{\lambda}_j \ge 0$ for each j.

We now show (1.10). Suppose $f_k(\overline{x}) < 0$ for some $1 \le k \le n$. Put $y_k = f_k(\overline{x})$,

$$y_j = 0$$
 $j \ge 1, j \ne k,$

and $y_0 = \varepsilon$, where $\varepsilon > 0$. Then $(y_0, y_1, \dots, y_n) \in C$, because $\overline{x} \in A \cap F$, and hence

$$\overline{\lambda}_0 \varepsilon + \overline{\lambda}_k f_k(\overline{x}) \ge 0.$$

By letting $\varepsilon \downarrow 0$, we have $\overline{\lambda}_k f_k(\overline{x}) \geq 0$ thus $\overline{\lambda}_k \leq 0$. Since we had concluded that $\overline{\lambda}_k \geq 0$, we indeed have

$$f_k(\overline{x}) < 0 \quad \Rightarrow \quad \overline{\lambda}_k = 0.$$

Therefore (1.10) holds.

For each $x \in A$, put $z_i = f_i(x)$ for $1 \le j \le n$, and

$$z_0 = f_0(x) - f_0(\overline{x}) + \varepsilon,$$

where $\varepsilon > 0$. Then $(z_0, z_1, \dots, z_n) \in C$ and

$$\overline{\lambda}_0(f_0(x) - f_0(\overline{x}) + \varepsilon) + \overline{\lambda}_1 f_1(x) + \ldots + \overline{\lambda}_n f_n(x) \ge 0$$

By letting $\varepsilon \downarrow 0$, we have

$$\mathcal{L}(x,\overline{\lambda}_0,\ldots,\overline{\lambda}_n) \geq \overline{\lambda}_0 f_0(\overline{x}).$$

Therefore (1.11) follows due to (1.10).

Suppose now the Slater's condition holds. Recall that $\overline{\lambda}_0, \dots, \overline{\lambda}_n$ are nonnegative and not all zero. If $\overline{\lambda}_0 = 0$, then $\mathcal{L}(\overline{x}, \overline{\lambda}_0, \dots, \overline{\lambda}_n) = 0$ and

$$\mathcal{L}(x,\overline{\lambda}_0,\ldots,\overline{\lambda}_n)<0$$

for some $x \in A$. This is a contradiction to (1.11), then $\overline{\lambda}_0 > 0$.

(b) Let $x \in A \cap F$. In particular, $x \in F$ and, because $\overline{\lambda}_i \ge 0$, $1 \le j \le n$,

$$\sum_{j=1}^{n} \overline{\lambda}_{j} f_{j}(x) \le 0.$$

Finally, due to (1.10) and (1.11),

$$f_0(\overline{x}) = \mathcal{L}(\overline{x}, 1, \overline{\lambda}_1, \dots, \overline{\lambda}_n)$$

$$\leq \mathcal{L}(x, 1, \overline{\lambda}_1, \dots, \overline{\lambda}_n)$$

$$\leq f_0(x)$$

for each $x \in A \cap F$.

Exercises

- 1.1 Let $f, g: S \to \mathbb{R}$ be convex functions, where $S \subseteq \mathbb{R}^n$ is convex. Show the following:
 - (a) If c is a nonnegative real number, then f + cg is convex.
 - (b) If $F : \mathbb{R} \to \mathbb{R}$ is convex and increasing, then $F \circ f$ is convex.
 - (c) If $G : \mathbb{R} \to \mathbb{R}$ is concave and decreasing, then $G \circ g$ is concave.
- 1.2 Show that $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its **epigraph**

$$\{(x,y)\in\mathbb{R}^{n+1}\mid y\geq f(x)\}$$

is convex.

- 1.3 Prove that f(x) = |x| is convex in \mathbb{R}^n . Is f strictly convex? What about $g(x) = |x|^2$?
- 1.4 Show that the set of minimizers (which could be empty) of any convex function is convex. Prove also that strictly convex functions have at most one global minimizer.
- 1.5 Let $f_n : \mathbb{R} \to \mathbb{R}$ be a convex function for each $n \in \mathbb{N}$. Prove the following assertions.

- (a) If (f_n) converges to f (pointwise), then f is convex.
- (b) If $F(x) := \sup_{n \ge 1} f_n(x)$ is finite for each $x \in J$, then F is convex.
- 1.6 (**Least squares**) Let $A \in \mathcal{M}_{m \times n}$, with m > n, and $b \in \mathbb{R}^m$. The system Ax = b usually does not have a solution $x \in \mathbb{R}^n$, then an alternative is to find the *least-squares solution* \hat{x} —if it exists—, that is,

$$|A\hat{x} - b|^2 = \min_{x \in \mathbb{R}^n} |Ax - b|^2.$$

Assume rank(A) = n and prove that there exists a unique global minimizer \hat{x} , given by

$$\hat{x} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b.$$

Hint: Since rank(A) = n, use the fact that $M^{T}M$ is invertible.

1.7 Let $a \in \mathbb{R}^n$, $a \neq 0$. Use the Lagrange multipliers method to find the unique solution to the problem

$$\min_{x \in \mathbb{R}^n} \{ a^{\top} x : |x|^2 = 1 \}.$$

Hint: Use also the Cauchy-Schwarz inequality.

- 1.8 (Spectral theorem) Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix.
 - (a) Use Lagrange multipliers to show that there exists $\lambda_1 \in \mathbb{R}$ and $u_1 \in \mathbb{R}^n$, $|u_1| = 1$, such that

$$Au_1 = \lambda_1 u_1$$

and

$$x \in \mathbb{R}^n, |x| = 1 \implies x^{\mathsf{T}} A x \ge \lambda_1.$$
 (1.13)

- (b) Show that λ_1 is the smallest eigenvalue of A.
- (c) Show that exists $\lambda_2 \in \mathbb{R}$ and $u_2 \in \mathbb{R}^n$, $|u_2| = 1$, such that

$$Au_2 = \lambda_2 u_2$$

and

$$u_2^\top u_1 = 0.$$

Hint: Consider $W_1 = \{x \in \mathbb{R}^n \mid x^\top u_1 = 0\}$, verify that $Ax \in W_1$ for every $x \in W_1$, and find a minimizer u_2 of $x^\top Ax$ in some compact subset of W_1 .

(d) Prove that there exist an orthonormal basis $\{u_1, \ldots, u_n\}$ of \mathbb{R}^n and a vector $(\lambda_1, \ldots, \lambda_n)^{\mathsf{T}}$ such that

$$Au_j = \lambda_j u_j, \quad 1 \le j \le n.$$

- 1.9 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix. Prove the following:
 - (a) $tr(A) := \sum_{j=1}^{n} A_{jj} = \sum_{j=1}^{n} \lambda_{j}$.

Hint: Recall Exercise 1.8(d) to show that $AU = U\Lambda$, where Λ is diagonal and the columns of U are eigenvectors.

- 9
- (b) A is positive semidefinite if and only if its eigenvalues are nonnegative.
- (c) A is positive definite if and only if its eigenvalues are positive.
- 1.10 Let $h: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Consider the problem

$$\inf\{h(x) \mid x \in \mathbb{R}^n\}.$$

In numerical analysis, a vector $v \in \mathbb{R}^n \setminus \{0\}$ is said to be a *descent direction* of f at a if $D_v h(a) < 0$. If $\nabla h(a) \neq 0$, then $-\nabla h(a)$ is called the *steepest-descent direction* of h at a. Justify these names by proving the following:

(a) If $D_v h(a) < 0$, then there exists $t_0 > 0$ such that

$$h(a + tv) < h(a)$$
 $\forall t \in (0, t_0].$

(b) There exists a solution to

$$\min_{v\in\mathbb{R}^n}\{D_vh(a):|v|^2=1\},$$

and such a solution is given by $-\nabla h(a)/|\nabla h(a)|$.

Chapter 2

Semicontinuous functions

Definition 2.1. Let (X, d) be a metric space. The function $f: X \to (-\infty, \infty]$ is **lower semi-continuous** (lsc) on X if

$${x \in X \mid f(x) > \alpha}$$

is open for every $\alpha \in \mathbb{R}$. Likewise, f is upper semicontinuous (usc) if -f is usc.

Clearly, $f: X \to (-\infty, \infty]$ is lsc on X if and only if

$${x \in X \mid f(x) \le \alpha}$$

is closed for every $\alpha \in \mathbb{R}$.

In the following proposition, $X \times \mathbb{R}$ is endowed with the product topology. A characterization of lower semicontinuity is given by means of the **epigraph** of the function $f: X \to (-\infty, \infty]$

$$\operatorname{epi}(f) := \{(x, y) \in X \times \mathbb{R} \mid y \ge f(x)\}.$$

Proposition 2.2. Let (X, d) be a metric space. The function $f: X \to (-\infty, \infty]$ is lsc if and only if epi(f) is closed.

Proof. Assume first that f is lsc. Pick any sequence $(x_n, y_n) \in \text{epi}(f), n \in \mathbb{N}$, with

$$(x_n, y_n) \to (\overline{x}, \overline{y}).$$

Let $\varepsilon > 0$. Then

$$y_n < \overline{y} + \varepsilon, \qquad n \ge N,$$

for some $N \in \mathbb{N}$, and hence

$$f(x_n) \le y_n < \overline{y} + \varepsilon, \qquad n \ge N.$$
 (2.1)

Since f is lsc, the set $\{x \in X \mid f(x) \le \overline{y} + \varepsilon\}$ is closed, thus (2.1) yields

$$f(\overline{x}) \leq \overline{y} + \varepsilon$$
.

By letting $\varepsilon \downarrow 0$, we have $(\overline{x}, \overline{y}) \in \text{epi}(f)$. This proves that epi(f) is closed.

Conversely, assume epi(f) is closed. Let $\alpha \in \mathbb{R}$ and pick (x_n) any sequence in X with

$$f(x_n) \le \alpha, \qquad n \in \mathbb{N},$$

and $x_n \to \overline{x}$. Notice that $(x_n, \alpha) \in \operatorname{epi}(f)$ and $(x_n, \alpha) \to (\overline{x}, \alpha)$. Then $f(\overline{x}) \le \alpha$ because $\operatorname{epi}(f)$ is closed. This proves that

$${x \in X \mid f(x) \le \alpha}, \qquad \alpha \in \mathbb{R},$$

is closed.

Theorem 2.3. Let (X, d) be a metric space. The function $f: X \to (-\infty, \infty]$ is lsc if and only if, for each $x \in X$ and any $x_k \to x$,

$$\liminf_{k\to\infty} f(x_k) \ge f(x).$$

Proof. Assume f is lsc. Let $x \in X$ and $x_k \to x$. For each $\varepsilon > 0$, consider the real number

$$r_{\varepsilon} := \left\{ \begin{array}{ll} f(x) - \varepsilon & \text{if } f(x) \in \mathbb{R}, \\ 1/\varepsilon & \text{if } f(x) = \infty. \end{array} \right.$$

Notice that x is an element of the open set $\{y \in X \mid f(y) > r_{\varepsilon}\}\$, thus there exists $\delta > 0$ such that

$$d(y, x) < \delta \implies f(y) > r_{\varepsilon}$$
.

Since $x_k \to x$,

$$f(x_k) > r_{\varepsilon} \qquad \forall k \geqslant K,$$

for some $K \in \mathbb{N}$. Hence $\liminf_{k \to \infty} f(x_k) \ge r_{\varepsilon}$ and, by letting $\varepsilon \downarrow 0$, we obtain

$$\liminf_{k\to\infty} f(x_k) \ge f(x).$$

For the converse assertion, let $\alpha \in \mathbb{R}$. Pick any sequence (x_k) in X with

$$f(x_k) \leq \alpha, \qquad k \in \mathbb{N},$$

and $x_k \to x$. Observe that

$$\liminf_{k\to\infty} f(x_k) \le \alpha.$$

On the other hand,

$$\liminf_{k \to \infty} f(x_k) \ge f(x).$$

Therefore $f(x) \le \alpha$. This proves that

$$\{y \in X \mid f(y) \le \alpha\}, \qquad \alpha \in \mathbb{R},$$

is closed.

2.1 Existence of minimizers

Lemma 2.4. Let (X,d) be a compact metric space. If $f: X \to (-\infty,\infty]$ is lsc, then f is bounded below, i.e., there exists $\alpha_0 \in \mathbb{R}$ such that

$$f(x) \ge \alpha_0, \quad \forall x \in X.$$

Proof. Since f is lsc, $\bigcup_{\alpha \in \mathbb{R}} \{x \in X \mid f(x) > \alpha\}$ is an open cover of X. Then the compactness of X yields the desired conclusion.

Theorem 2.5. Let (X, d) be a metric space and $f: X \to (-\infty, \infty]$ be an lsc function. If there exists $r \in \mathbb{R}$ such that

$$S_r := \{x \in X \mid f(x) \le r\}$$

is nonempty and compact, then the set of global minimizers is nonempty and compact.

Proof. The restriction of f to S_r satisfies the hypotheses of Lemma 2.4, thus

$$l := \inf\{f(x) \mid x \in S_r\}$$

is a real number. For each $n \in \mathbb{N}$, there is $x_n \in S_r$ such that

$$l \le f(x_n) < l + \frac{1}{n}.$$

Since S_r is compact, the sequence (x_n) has a convergent subsequence, say $x_{n_k} \to x_0$, with $x_0 \in S_r$. Then

$$f(x_0) \le \liminf_{k \to \infty} f(x_{n_k}) \le l$$

because f is lsc. This actually proves that $f(x_0) = l$. Observe that f(x) > r for every $x \notin S_r$, then we have

$$f(x_0) \le f(x) \quad \forall x \in X.$$

Moreover,

$$\{\hat{x} \in X \mid f(\hat{x}) \le l\}$$

is a closed subset of the compact set S_{α} , then the set of global minimizers is nonempty and compact.

Let (X, d) be a metric space. If $f: X \to (-\infty, \infty]$ is not identically ∞ , then f is a *proper function*.

Corollary 2.6. Let (X, d) be a compact metric space. If $f: X \to (-\infty, \infty]$ is proper and lsc, then there exists $\hat{x} \in X$ such that

$$f(\hat{x}) \le f(x) \quad \forall x \in X.$$

Definition 2.7. Let $(X, \|\cdot\|)$ be a normed space. The function $f: X \to \mathbb{R}$ is **coercive** if

$$\lim_{\|x\|\to\infty} f(x) = \infty.$$

Theorem 2.8. Let $(X, \|\cdot\|)$ be a finite dimensional normed space (over \mathbb{R} or \mathbb{C}). If $f: X \to \mathbb{R}$ is lsc and coercive, then f attains its global minimum in X.

2.2 Ekeland's variational principle

Theorem 2.9 (Ekeland's variational principle). Let (X, d) be a complete metric space and let $f: X \to (-\infty, \infty]$ be a proper, bounded below, and lsc function. Assume that $\varepsilon > 0$ and $x_0 \in X$ satisfy

$$f(x_0) \le \varepsilon + \inf_{x \in X} f(x).$$
 (2.2)

Then, for each $\lambda > 0$ *, there exists* $\overline{x} \in X$ *such that*

$$f(\overline{x}) \leqslant f(x_0),\tag{2.3}$$

$$d(\overline{x}, x_0) \le \lambda, \tag{2.4}$$

$$f(\overline{x}) < f(x) + \frac{\varepsilon}{\lambda} d(x, \overline{x}) \qquad \forall x \in X \setminus \{\overline{x}\}.$$
 (2.5)

Proof. For each $x \in X$, consider the set

$$S(x) := \left\{ y \in X \mid y \neq x, \ f(x) \ge f(y) + \frac{\varepsilon}{\lambda} d(y, x) \right\}.$$

Notice that $y \in S(x)$ implies f(y) < f(x). On the other hand, if $S(\overline{x}) = \emptyset$ for some $\overline{x} \in X$, then \overline{x} satisfies (2.5).

Step 1. If $x' \in S(x_0)$, then $d(x', x_0) \le \lambda$. Indeed,

$$\frac{\varepsilon}{\lambda}d(x', x_0) \le f(x_0) - f(x')$$

$$\le \varepsilon + \inf_X f - f(x')$$

$$\le \varepsilon,$$

which yields the required inequality.

Step 2. There exists a sequence (x_n) in X such that

$$x_n \in S(x_{n-1}) \cup \{x_{n-1}\}, \qquad n \ge 1.$$
 (2.6)

Furthermore, for each $n \ge 1$ *,*

$$S(x_{n-1}) \neq \emptyset \quad \Rightarrow \quad x_n \in S(x_{n-1}), \tag{2.7}$$

and

$$x_n \neq x_{n-1} \implies f(x_n) < \varepsilon_n + \inf_{S(x_{n-1})} f,$$
 (2.8)

where

$$\varepsilon_n := \frac{1}{2} [f(x_{n-1}) - \inf_{S(x_{n-1})} f]$$

We inductively define the sequence (x_n) . Suppose that, for $n \ge 1$, x_{n-1} is known—recall that x_0 is given. If $S(x_{n-1}) = \emptyset$, then set $x_n = x_{n-1}$. Otherwise, $\inf_{S(x_{n-1})} f$ is a well-defined real number and ε_n is strictly positive, thus there is $x_n \in S(x_{n-1})$ such that

$$f(x_n) < \varepsilon_n + \inf_{S(x_{n-1})} f$$
.

Step 3. Suppose (x_n) satisfies (2.7). If $S(x_k) = \emptyset$ for some $k \ge 0$, then there is \hat{k} such that $\bar{x} := x_{\hat{k}}$ verifies (2.3), (2.4), and (2.5).

If $S(x_0) = \emptyset$, then $\overline{x} = x_0$ verifies the required inequalities. Suppose $S(x_0) \neq \emptyset$ but $S(x_k) = \emptyset$ for some $k \geq 1$. Let

$$\hat{k} = \min\{1 \le j \le k \mid S(x_i) = \emptyset\}.$$

Then $S(x_{\hat{k}}) = \emptyset$ and $\overline{x} = x_{\hat{k}}$ satisfies (2.5). Since $x_k \in S(x_{k-1})$, for $1 \le k \le \hat{k}$,

$$\frac{\varepsilon}{\lambda}d(x_0, x_1) \le f(x_0) - f(x_1)$$

$$\vdots$$

$$\frac{\varepsilon}{\lambda}d(x_{\hat{k}-1}, x_{\hat{k}}) \le f(x_{\hat{k}-1}) - f(x_{\hat{k}}).$$

By adding these inequalities up and using the triangle inequality, we have

$$\frac{\varepsilon}{\lambda}d(x_k, x_{\hat{k}}) \le f(x_k) - f(x_{\hat{k}}), \qquad 0 \le k < \hat{k}, \tag{2.9}$$

In particular, we see that $x_{\hat{k}} \in S(x_0)$. Thus $\overline{x} = x_{\hat{k}}$ satisfies (2.3) and, by Step 1, (2.4) also holds.

Step 4. Suppose (x_n) satisfies (2.7) and (2.8). If $S(x_k) \neq \emptyset$ for every $k \geq 0$, then (x_n) is convergent and $\overline{x} = \lim_{n \to \infty} x_n$ verifies (2.3), (2.4), and (2.5).

By property (2.7), we have

$$\frac{\varepsilon}{\lambda}d(x_k, x_n) \le f(x_k) - f(x_n), \qquad k < n. \tag{2.10}$$

Then $f(x_n) < f(x_{n-1})$, for every $n \ge 1$, and hence $(f(x_n))$ converges—because it is a decreasing and bounded-below sequence. Moreover, since $(f(x_n))$ is a Cauchy sequence so is (x_n) because of (2.10). Since X is complete, there exists $\overline{x} = \lim_{n \to \infty} x_n$ and

$$\lim_{n\to\infty} f(x_n) \ge f(\overline{x})$$

due to the lower semicontinuity of f. On the other hand, fix k and let $n \to \infty$ in (2.10) to obtain

$$f(\overline{x}) + \frac{\varepsilon}{\lambda} d(x_k, \overline{x}) \le f(x_k),$$
 (2.11)

that is, $\overline{x} \in S(x_k)$ for each $k \ge 0$. In particular, $\overline{x} \in S(x_0)$, then \overline{x} satisfies (2.3) and (2.4). Suppose \overline{x} does not satisfy (2.5), that is, there exists $x' \in S(\overline{x})$. Then

$$f(x') < f(\overline{x}) \tag{2.12}$$

and

$$f(x') + \frac{\varepsilon}{\lambda} d(x', \overline{x}) \le f(\overline{x}).$$

The latter inequality along with (2.11) imply that $x' \in S(x_k)$ for every k. From (2.8),

$$2f(x_{k+1}) - f(x_k) < \inf_{S(x_k)} f \qquad \forall k,$$

hence $2f(x_{k+1}) - f(x_k) < f(x')$ and, by letting $k \to \infty$,

$$f(\overline{x}) \le \lim_{k \to \infty} f(x_k) \le f(x').$$

This inequality contradicts (2.12). We conclude that \bar{x} indeed satisfies (2.5).

Therefore the sequence defined in Step 2 is convergent—by Steps 3 and 4—and its limit satisfies the theorem.

Corollary 2.10. Let (X, d) be a complete metric space and let $f: X \to (-\infty, \infty]$ be a proper, bounded below, and lsc function. For each $\varepsilon > 0$, there exists $\overline{x} \in X$ such that

$$f(\overline{x}) < f(x) + \sqrt{\varepsilon}d(x, \overline{x}) \qquad \forall x \in X \setminus \{\overline{x}\}.$$
 (2.13)

The following result, also known as Banach's Fixed Point Theorem, follows from Ekeland's variational principle (EVP).

Theorem 2.11 (Contraction mapping principle). Let (X, d) be a complete metric space and let $F: X \to X$ be a contraction mapping, that is, there is $0 < \beta < 1$ such that

$$d(F(x), F(y)) \le \beta d(x, y) \qquad \forall x, y \in X. \tag{2.14}$$

Then F has a unique fixed point \overline{x} , i.e., $F(\overline{x}) = \overline{x}$.

Proof. Let f(x) := d(x, F(x)), for each x in X, and $\varepsilon := (1 - \beta)^2/2$. Thus

$$\sqrt{\varepsilon} + \beta < 1. \tag{2.15}$$

By Corollary 2.10 to EVP, there exists \bar{x} such that

$$d(\overline{x}, F(\overline{x})) < d(x, F(x)) + \sqrt{\varepsilon}d(x, \overline{x}) \qquad \forall x \neq \overline{x}.$$

Suppose $\overline{x} \neq F(\overline{x})$. Then, by the latter inequality and (2.14),

$$d(\overline{x}, F(\overline{x})) < (\beta + \sqrt{\varepsilon})d(\overline{x}, F(\overline{x}))$$

which contradicts (2.15). Therefore $\overline{x} = F(\overline{x})$.

Concerning uniqueness, if F(x') = x', then

$$d(\overline{x}, x') = d(F(\overline{x}), F(x')) \le \beta d(\overline{x}, x')$$

and hence $d(\bar{x}, x')$. This proves the theorem.

Exercises

2.1 Let \mathcal{F} be a collection of lsc functions on the metric space (X, d). Show that

$$F(x) := \sup\{f(x) \mid f \in \mathcal{F}\}, \quad x \in X,$$

is lsc.

Hint: Notice that
$$\{x \in X \mid F(x) > \alpha\} = \bigcup_{f \in \mathcal{F}} \{x \in X \mid f(x) > \alpha\}.$$

- 2.2 Let $f, g: X \to (-\infty, \infty]$ be lsc functions on the metric space (X, d). If r > 0, then show that rf and f + g are lsc.
- 2.3 Prove that $f: X \to \mathbb{R}$ is continuous if and only if f is both l.s.c. and u.s.c.
- 2.4 Let A be a subset of the metric space (X, d). Consider the function

$$I_A(x) = \begin{cases} 0 & \text{if } x \in A, \\ \infty & \text{if } x \notin A. \end{cases}$$

Show that I_A is lsc if and only if A is closed.

2.5 Let (X, d) be a metric space and $\emptyset \neq A \subseteq X$. Define

$$d(x,A) := \inf_{a \in A} d(x,a) \quad x \in X.$$
 (2.16)

Prove the following:

- (a) $d(x, A) \le d(x, y) + d(y, A)$ for every $x, y \in X$,
- (b) the function $d(\cdot, A): X \to \mathbb{R}$ is uniformly continuous,
- (c) if A is closed and d(x, A) = 0, then $x \in A$.
- 2.6 Let (X, d) be a metric space, $f: X \to \mathbb{R}$, and $g: \mathbb{R} \to \mathbb{R}$.
 - (a) Give an example of lsc functions f and g such that $g \circ f$ is not lsc.
 - (b) Suppose f is continuous and g is lsc. Prove that $g \circ f$ is lsc.
- 2.7 (**The Fundamental Theorem of Algebra** [3, 1, 5]). Let $p(z) = a_n z^n + \ldots + a_1 z + a_0$ be a polynomial with complex coefficients, $a_n \neq 0$ and $n \geq 1$. Define the function f(z) := |p(z)| for each $z \in \mathbb{C}$.
 - (a) Show that f has a global minimizer.

Hint: Show that f is coercive.

(b) Find explicitly one (there could be more) global minimizer of f when (i) $p(z) = a_1z + \ldots + a_nz^n$, that is $a_0 = 0$, and (ii) $p(z) = a_0 + a_kz^k$ with $a_k \neq 0$.

(c) Let $z_0 \in \mathbb{C}$. Explain why there exist complex numbers c_0, c_1, \ldots, c_n such that

$$p(z) = c_0 + c_1(z - z_0) + \ldots + c_n(z - z_0)^n.$$

Hint: Write $p(z) = p((z - z_0) + z_0)$.

Further, prove that, for some k = 1, ..., n,

$$p(z) = c_0 + c_k(z - z_0)^k + (z - z_0)^{k+1}q(z),$$

where $c_k \neq 0$ and q is a polynomial.

(d) Let z_0 be a global minimizer of f, $t \in (0, 1)$, and $w \in \mathbb{C}$ satisfies $c_0 + c_k w^k = 0$. Suppose $f(z_0) > 0$, that is, $c_0 \neq 0$. Show that

$$f(z_0 + tw) \le |c_0|(1 - t^k) + |tw|^{k+1}|q(z_0 + tw)|$$

and

$$t|w^{k+1}q(z_0+tw)| < |c_0|$$

for some t small enough.

- (e) Prove the Fundamental Theorem of Algebra.
- 2.8 (**Baby EVP** [2]) Let X be a finite-dimensional vector space. Suppose $f: X \to \mathbb{R}$ is lsc and bounded below. Let $\varepsilon > 0$ and $x_0 \in X$ satisfy

$$f(x_0) \le \inf f + \varepsilon.$$
 (2.17)

Prove (without using Ekeland's variational principle!) that there exists $\overline{x} \in X$ such that

- (i) $f(\overline{x}) \leq f(x_0)$,
- (ii) $|\overline{x} x_0| \leq \sqrt{\varepsilon}$, and
- (iii) $f(\overline{x}) \le f(x) + \sqrt{\varepsilon}|x \overline{x}|$ for all $x \in X$.

In order to accomplish the proof, proceed as follows:

(a) Show that $g(x) = f(x) + \sqrt{\varepsilon}|x - x_0|$ has a global minimizer \overline{x} in X.

Hint: Show that g is coercive and lsc.

- (b) Use the inequality $g(\overline{x}) \le g(x_0)$ to prove (i) and (ii).
- (c) Finally, use (a) to prove (iii).

Hint: Notice that $|x - x_0| \le |x - \overline{x}| + |\overline{x} - x_0|$.

Appendix A

Convexity in \mathbb{R}^n

A.1 Continuity of convex functions

Theorem A.1. Let $f: S \to \mathbb{R}$ be a convex function. If x_0 is an interior point of S, then f is continuous at x_0 .

Proof. Let $\{e_k \mid k = 1, ..., n\}$ be the canonical basis of \mathbb{R}^n . Since x_0 is an interior point of S, there exists $\varepsilon > 0$ such that $\overline{B}_1(x_0, \varepsilon) \subseteq S$. Define, for k = 1, ..., 2n,

$$d_k = \begin{cases} \varepsilon e_{\frac{k+1}{2}} & \text{if } k \text{ is odd,} \\ -\varepsilon e_{\frac{k}{2}} & \text{if } k \text{ is even,} \end{cases}$$

and $M := \max\{f(x_0 + d_k) \mid k = 1, ..., 2n\}$. Then

$$f(x) \le M \quad \forall x \in \overline{B}_1(x_0, \varepsilon).$$
 (A.1)

On the other hand, let $\{x_k\} \subseteq S$ be any sequence converging to x_0 . Then there exists K such that $x_k \in B_1(x_0, \varepsilon)$ for every $k \ge K$. Furthermore,

$$x_k = \lambda_k x_0 + (1 - \lambda_k) y_k, \qquad k \ge K,$$

for some $\lambda_k \in [0, 1]$ and y_k such that $||y_k - x_0||_1 = \varepsilon$. Notice that

$$\lim_{k \to \infty} \| (1 - \lambda_k)(y_k - x_0) \| = 0,$$

that is, $\lim_{k\to\infty} (1 - \lambda_k) = 1$. Since f is convex,

$$f(x_k) \le \lambda_k f(x_0) + (1 - \lambda_k) f(y_k), \quad k \ge K,$$

thus, by (A.1), $\overline{\lim}_{k\to\infty} f(x_k) \le f(x_0)$.

On the other hand, the inequality $\underline{\lim}_{k\to\infty} f(x_k) \ge f(x_0)$ can be obtained by considering convex combinations of the form $x_0 = \theta_k x_k + (1 - \theta_k) z_k$ with $||z_k - x_0|| = \varepsilon$. Therefore $\overline{\lim}_{k\to\infty} f(x_k) \le f(x_0) \le \underline{\lim}_{k\to\infty} f(x_k)$ implies the continuity of f at x_0 .

Corollary A.2. Let $f: S \to \mathbb{R}$ be a convex function. If S is open, then f is continuous on S.

A.2 Convex functions of class C^2

Theorem A.3. Let $f: S \to \mathbb{R}$ be a C^2 function, where $S \subseteq \mathbb{R}^n$ is open and convex.

- (a) f is convex in S if and only if $D^2 f(x)$ is positive semidefinite for every $x \in S$.
- (b) If $D^2 f(x)$ is positive definite for every $x \in S$, then f is strictly convex.

Proof. Let $x \in S$ and $h \in \mathbb{R}^n$.

(a) Suppose that f is convex on S and fix $x \in S$. Let $h \in \mathbb{R}^n$, $h \neq 0$. Then we can choose $N \in \mathbb{N}$ such that

$$x + n^{-1}h \in S$$
 $\forall n \ge N$.

Since S is convex, by Taylor theorem, there exists $\theta_n \in (0, 1)$ such that

$$f(x+n^{-1}h) = f(x) + n^{-1}Df(x)h + \frac{1}{2}n^{-2}h^{\top}D^{2}f(x+\theta_{n}n^{-1}h)h, \qquad \forall n \ge N.$$

Theorem 1.7 implies

$$h^{\mathsf{T}}D^2 f(x + \theta_n n^{-1}h)h \ge 0, \qquad \forall n \ge N.$$
 (A.2)

Notice that, when $n \to \infty$, $|\theta_n n^{-1} h| \to 0$ and hence

$$\lim_{n \to \infty} D^2 f(x + \theta_n n^{-1} h) = D^2 f(x)$$

because f is of class C^2 . Then, by letting $n \to \infty$ in (A.2), it follows that

$$h^{\mathsf{T}}D^2f(x)h \ge 0.$$

This proves that $D^2 f(x)$ is positive semidefinite at x.

Conversely, by Taylor theorem, with h = x - a,

$$f(x) = f(a) + Df(a) \cdot (x - a) + \frac{1}{2}(x - a)^{\mathsf{T}} D^2 f(a + \theta(x - a)) \cdot (x - a) \tag{A.3}$$

for some $\theta \in (0, 1)$. Since $D^2 f(\cdot)$ is positive definite, then $f(x) - f(a) \ge D f(a) \cdot (x - a)$ for each $x, a \in S$. Therefore f is convex by Theorem 1.7.

(b) It follows from (A.3) and Theorem 1.7.

A.3 Separation theorems

Definition A.4. Let $p \in \mathbb{R}^n \setminus \{0\}$ and $\beta \in \mathbb{R}$. The **hyperplane** determined by p and β is the set

$$H(p,\beta) := \{x \in \mathbb{R}^n \mid \langle p, x \rangle = \beta\}.$$

Theorem A.5. Let $C \subseteq \mathbb{R}^n$ be a nonempty, convex, and closed set. If $y \in \mathbb{R}^n \setminus C$, then there exists a hyperplane $H(p, \alpha)$, $p \neq 0$, that separates y from C, that is,

$$\langle p, y \rangle < \alpha \le \langle p, c \rangle \quad \forall c \in C.$$

Furthermore, there exists a hyperplane $H(p,\beta)$, $p \neq 0$, that strictly separates y from C, that is,

$$\langle p, y \rangle < \beta < \langle p, c \rangle \quad \forall c \in C.$$

Proof. Since C is closed, there exists $c_0 \in C$ such that $0 < ||y - c_0|| \le ||y - c||$ for every $c \in C$. Define $p := c_0 - y$ and $\alpha := \langle p, c_0 \rangle$. Notice that $p \ne 0$ and

$$\langle p, y \rangle = \alpha - ||p||^2 < \alpha.$$

For any $c \in C$ and $\lambda \in (0, 1]$, the point $c_{\lambda} := (1 - \lambda)c_0 + \lambda c$ belongs to C. Then

$$||y - c_0||^2 \le ||y - c_\lambda||^2$$

$$= ||y - c_0 + \lambda(c_0 - c)||^2$$

$$= ||y - c_0||^2 + \lambda^2 ||c_0 - c||^2 + 2\lambda \langle y - c_0, c_0 - c \rangle,$$

which is equivalent to $2\langle p, c_0 - c \rangle \le \lambda ||c_0 - c||^2$. By letting $\lambda \to 0$, we obtain

$$\langle p, y \rangle < \alpha \le \langle p, c \rangle$$
.

The second part of the theorem follows for any β in the interval $(\langle p, y \rangle, \alpha)$.

Theorem A.6. Let $C \subseteq \mathbb{R}^n$ be a nonempty and convex set. If $y \notin C$, then there exists a hyperplane $H(p,\beta)$ that separates y from C, that is,

$$\langle p, y \rangle \le \beta \le \langle p, c \rangle \quad \forall c \in C.$$

Proof. Notice first that the closure \overline{C} of C is also convex. Further, there exists $c_0 \in \overline{C}$ such that $||y - c_0|| \le ||y - c||$ for every $c \in C$.

There are two cases for y, (i) $y \notin \overline{C}$ and (ii) y lies in the boundary of \overline{C} . Theorem A.5 implies the desired result for case (i). Assume (ii) y is a boundary point of \overline{C} , then there is a sequence $\{y_k\} \subseteq \mathbb{R}^n \setminus \overline{C}$ that converges to y. By Theorem A.5, there exists a hyperplane $H(\tilde{p}_k, \tilde{\beta}_k)$, $\tilde{p}_k \neq 0$, that separates \overline{C} from $y_k, k \in \mathbb{N}$. Notice that $H(p_k, \beta_k)$, with

$$p_k := \frac{\tilde{p}_k}{\|\tilde{p}_k\|}, \qquad \beta_k := \frac{\tilde{\beta}_k}{\|\tilde{p}_k\|},$$

also separates \overline{C} from y_k , for each $k \in \mathbb{N}$. Then we can pick a subsequence $\{p_{k_l}\}$ of $\{p_k\}$ such that $\lim_{k\to\infty} p_{k_l} = p$, for some p with ||p|| = 1. Therefore $H(p,\beta)$ separates p from p0, where p0 := p1.

Theorem A.7 (Separating hyperplane theorem). Let A and B be nonempty convex sets in \mathbb{R}^n such that $A \cap B = \emptyset$. Then there exists a hyperplane that separates A and B.

Proof. Let $D = A - B := \{x - y \mid x \in A, y \in B\}$. Then D is a convex set and $0 \notin D$. By Theorem A.6, there is a hyperplane $H(p, \alpha)$ such that

$$\langle p, x - y \rangle \le \alpha \le 0 \quad \forall x \in A, y \in B.$$

Define $\beta := \sup\{\langle p, x \rangle \mid x \in A\}$. Therefore the hyperplane $H(p, \beta)$ separates A and B.

Exercises

- A.1 Let $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ be convex sets. Prove that $A \times B$ is convex in \mathbb{R}^{n+m} .
- A.2 Show any open ball $B_{\varepsilon}(x)$ in \mathbb{R}^n is a convex set.
- A.3 Let $A \subseteq \mathbb{R}^n$ be a convex set and denote by int(A) the set of its interior points. Is int(A) a convex set?
- A.4 Show that the *simplex* $\{(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n_+ \mid \sum_{j=1}^n \lambda_j = 1\}$ is convex and compact.
- A.5 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. If f(0) = 0 and f is an even function (f(x) = f(-x)) for every $x \in \mathbb{R}^n$, show that $f(x) \ge 0$ for every $x \in \mathbb{R}^n$.
- A.6 Let $f(x, y) = (x^{-\rho} + y^{-\rho})^{-1/\rho}$ for $(x, y) \in \mathbb{R}^2_{++}$ and $\rho \neq 0$. Show that f is
 - (a) concave if $\rho \ge -1$,
 - (b) convex if $\rho \leq -1$.
- A.7 Let $f : \mathbb{R} \to \mathbb{R}$ be a concave function. Show that $x_1 < x_2 < x_3$ implies

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge \frac{f(x_3) - f(x_1)}{x_3 - x_1} \ge \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

Hint: Consider the convex combination $x_2 = \lambda x_3 + (1 - \lambda)x_1$, where $\lambda = \frac{x_2 - x_1}{x_3 - x_1}$.

A.8 If x_1, \dots, x_k are positive real numbers, show that

$$\sqrt[k]{x_1\cdots x_k} \le \frac{x_1+\ldots+x_k}{k}.$$

A.9 (Sydsæter et al. [4]) Consider the Cobb–Douglas function

$$f(x) = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

defined on \mathbb{R}_{++}^n for $\alpha_i > 0$ (i = 1, 2, ..., n).

(a) Show that the kth leading principal minor of the Hessian Hf(x) is

$$H_k f(x) = [f(x)]^k \frac{\alpha_1 \cdots \alpha_k}{(x_1 \cdots x_k)^2} \begin{vmatrix} \alpha_1 - 1 & \alpha_1 & \cdots & \alpha_1 \\ \alpha_2 & \alpha_2 - 1 & \cdots & \alpha_2 \\ & & \ddots & \\ \alpha_k & \alpha_k & \cdots & \alpha_k - 1 \end{vmatrix}.$$

- (b) Show indeed that $H_k f(x) = [-f(x)]^k [1 \sum_{i=1}^k \alpha_i] \frac{\alpha_1 \cdots \alpha_k}{(x_1 \cdots x_k)^2}$.
- (c) Prove that f is strictly concave if $\alpha_1 + \ldots + \alpha_n < 1$.

Bibliography

- [1] C. Fefferman. Classroom Notes: An Easy Proof of the Fundamental Theorem of Algebra. *Amer. Math. Monthly*, 74(7):854–855, 1967.
- [2] J.-B. Hiriart-Urruty. A short proof of the variational principle for approximate solutions of a minimization problem. *Amer. Math. Monthly*, 90(3):206–207, 1983.
- [3] J. E. Littlewood. Mathematical notes (14): "Every polynomial has a root.". *J. London Math. Soc.*, 16:95–98, 1941.
- [4] K. Sydsæter, P. Hammond, A. Seierstad, and A. Strøm. *Further mathematics for economic analysis*. Pearson Education, second edition, 2008.
- [5] F. Terkelsen. The fundamental theorem of algebra. *Amer. Math. Monthly*, 83(8):647, 1976.