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Chapter 1

Basics of optimization in Rn

1.1 Necessary conditions
Definition 1.1. Let X ⊆ Rn and f : X → R. The point x̂ ∈ X is a local minimizer of f if there
is a ball Bδ = {x ∈ Rn | |x − x̂| < δ} around x̂ such that

f (x̂) ≤ f (x) ∀x ∈ Bδ ∩ X.

The proof of the following proposition follows from the latter definition.

Proposition 1.2. Let X be an open subset of Rn and f : X → R. If x̂ ∈ X is a local minimizer
of f and there exists the directional derivative

D+
v f (x̂) := lim

t↓0

f (x̂ + tv) − f (x̂)
t

,

for some v ∈ Rn, v , 0, then
D+

v f (x̂) ≥ 0.

If, in addition, there exists the two-sided directional derivative

Dv f (x̂) := lim
t→0

f (x̂ + tv) − f (x̂)
t

,

then Dv f (x̂) = 0.

Corollary 1.3. Let X be an open subset of Rn. If x̂ ∈ X is a local minimizer of the differen-
tiable function f : X → R, then

∇ f (x̂) = 0.

1.2 Minimization of convex functions
The subset X of Rn is convex if for each x, y ∈ X and λ ∈ [0, 1],

λx + (1 − λ)y ∈ X.

1
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Definition 1.4. Let X be a convex subset of Rn. The function f : X → R is called

(a) convex if for every x, y ∈ X and λ ∈ [0, 1]

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y); (1.1)

(b) strictly convex if the inequality is strict for x , y and λ ∈ (0, 1).

Proposition 1.5. Let X be a convex subset of Rn. If f : X → R is a convex function, then any
local minimizer is a global minimizer.

Proof. Let x̂ be a local minimizer of f , thus

f (x̂) ≤ f (y), ∀y ∈ X ∩ U,

where U is some open subset of Rn. If x ∈ X, then there is y ∈ x ∩U and 0 < λ < 1 such that

y = λx̂ + (1 − λ)x.

Then

f (x̂) ≤ f (y)
≤ λ f (x̂) + (1 − λ) f (x),

that is, (1 − λ) f (x̂) ≤ (1 − λ) f (x). Therefore f (x̂) ≤ f (x) for each x ∈ X. �

Lemma 1.6. Let f : S → R be a convex function, S ⊆ Rn convex, and a ∈ S . Set, for x ∈ S ,

xλ := λx + (1 − λ)a, λ ∈ [0, 1]. (1.2)

Then, for every 0 < λ < λ′ ≤ 1,

f (xλ) − f (a)
λ

≤
f (xλ′) − f (a)

λ′
. (1.3)

Further, if f is strictly convex and x , a, then

f (xλ) − f (a)
λ

<
f (xλ′) − f (a)

λ′
, 0 < λ < λ′ ≤ 1. (1.4)

Proof. We only show the inequality when f is strictly convex, the other one is totally analo-
gous. Pick x, a ∈ S with x , a. Then, for 0 < λ < λ′ ≤ 1,

f
(
λ

λ′
xλ′ +

(
1 −

λ

λ′

)
a
)
<
λ

λ′
f (xλ′) +

(
1 −

λ

λ′

)
f (a)

since 0 < λ/λ′ < 1 and xλ′ , a, where xλ′ is given by (1.2). Thus

λ′[ f (xλ) − f (a)] < λ[ f (xλ′) − f (a)], 0 < λ < λ′ ≤ 1,

because (xλ′) λ
λ′

= xλ, with the notation (1.2). �
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Lemma 1.7. Let f : S → R be a C1 function, where S is an open and convex subset of Rn.
The function f is convex in S if and only if

f (x) − f (a) ≥ 〈D f (a), x − a〉 ∀x, a ∈ S . (1.5)

Likewise, f is strictly convex if and if the inequality is strict for every x , a.

Proof. Suppose that f is convex in S . Then for every x, a ∈ S and λ ∈ (0, 1]

f (x) − f (a) ≥
f (a + λ(x − a)) − f (a)

λ
.

Letting λ→ 0+, we obtain (1.5).
Conversely, let x, a ∈ S and λ ∈ [0, 1]. Define xλ := λx + (1 − λ)a, then (1.5) yields

f (x) − f (xλ) ≥ 〈D f (xλ), x − xλ〉,
f (a) − f (xλ) ≥ 〈D f (xλ), a − xλ〉.

Therefore

λ[ f (x) − f (xλ)] + (1 − λ)[ f (a) − f (xλ)] ≥ 〈D f (xλ), λ(x − xλ) + (1 − λ)(a − xλ)〉.

Since λ(x − xλ) + (1 − λ)(a − xλ) = 0, it follows that

λ f (x) + (1 − λ) f (a) ≥ f (λx + (1 − λ)a).

We now show the second equivalence. Suppose first that f is strictly convex and pick
x, a ∈ S with x , a. By (1.4), with λ′ = 1,

f (a + λ(x − a)) − f (a)
λ

< f (x) − f (a), 0 < λ < 1,

then

f (x) − f (a) > inf
0<λ<1

f (a + λ(x − a)) − f (a)
λ

= D f (a) · (x − a).

For the converse, pick x, a ∈ S , with x , a. Then, for each λ ∈ (0, 1),

f (x) − f (xλ) > D f (xλ) · (x − xλ),
f (a) − f (xλ) > D f (xλ) · (a − xλ),

since xλ , a. Hence, as above,

λ f (x) + (1 − λ) f (a) > f (λx + (1 − λ)a), λ ∈ (0, 1).

This completes the proof. �
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Theorem 1.8 (First–order necessary and sufficient condition). Let X,U be sets in Rn such
that X ⊆ U, X is convex, and U is open. Let f : U → R be differentiable on U and convex on
X. Then x∗ is a global minimizer of f in X if and only if

D f (x∗) · (x − x∗) ≥ 0 ∀x ∈ X. (1.6)

Proof. Suppose first that x∗ is a minimizer of f and pick any x ∈ X. Since f is differentiable,
there exists D+

v f (x∗) = D f (x∗) · v, with v = x − x∗; by Proposition 1.2 D f (x∗) · (x − x∗) ≥ 0.
Conversely, if (1.6) holds, then by Proposition 1.7,

f (x) ≥ f (x∗) + D f (x∗) · (x − x∗) ≥ f (x∗) ∀x ∈ X.

Therefore x∗ is a global minimizer of f in X. �

1.3 Lagrange multipliers

Theorem 1.9 (Lagrange). Let f : U → R and g : U → Rm be of class C1, where U is an
open subset of Rn and m < n. If ẑ is a local minimizer to problem

min
z∈U
{ f (z) | g(z) = 0} (1.7)

and rank(Dg(ẑ)) = m, then there is a unique λ̂ ∈ Rm such that

D f (ẑ) = λ̂>Dg(ẑ). (1.8)

Proof. Let us rewrite the optimization problem as

min
(x,y)∈U

{ f (x, y) | g(x, y) = 0}

where x ∈ Rn−m and y ∈ Rm. Since rank(Dg(x̂, ŷ)) = m, where (x̂, ŷ) = ẑ is the given local
minimizer, we can assume that the m rows of Dyg(x̂, ŷ) are l.i.—otherwise the variables can
be reordered. Then by the Implicit Function Theorem, there exists a local implicit C1 function
h such that g(x, h(x)) = 0, with h(x̂) = ŷ, and

Dh(x̂) = −[Dyg(x̂, ŷ)]−1 · Dxg(x̂, ŷ).

On the other hand, x̂ is a local minimizer of the function F(x) := f (x, h(x)) and so
DF(x̂) = 0. By the Chain Rule, Dx f (x̂, h(x̂)) + Dy f (x̂, h(x̂)) · Dh(x̂) = 0, that is,

Dx f (x̂, ŷ) = Dy f (x̂, ŷ) · [Dyg(x̂, ŷ)]−1 · Dxg(x̂, ŷ).

The result follows by defining λ̂> := Dy f (x̂, ŷ) · [Dyg(x̂, ŷ)]−1. �

Proposition 1.10. Let f : U → R and g : U → Rm be differentiable, where U is an open and
convex subset of Rn. Suppose that x̂ satisfies (1.8) for some λ̂ ∈ Rm and the function

x 7→ f (x) − λ̂>g(x), x ∈ U,

is convex, then x̂ is a global minimizer to problem (1.7).

Proof. It follows from Theorem 1.8. �
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1.4 Inequality constraints
Let X denote a linear space an let A be a nonempty convex subset of X.

Suppose f j : X → R is convex, for j = 0, 1, . . . , n. In this section, we consider the convex
minimization problem

inf
x∈A∩F

f0(x), (1.9)

where
F := {x ∈ X | f1(x) ≤ 0, . . . , fn(x) ≤ 0}.

Remark 1.11. Let f : X → R be a continuous convex function, where X = Rn. Put

F = {x ∈ X | f (x) ≤ 0}

and
G = {x ∈ X | f (x) < 0}.

Then G is open, because f is continuous, and G ⊆ F, hence

G ⊆ int(F).

In general, int(F) , G. Take, for instance, f ≡ 0. Nonetheless, if G , ∅, then

int(F) = G.

Indeed, let x ∈ int(F) and x0 ∈ G. Then there exists 0 < ε < 1 such that

y := x + ε(x − x0) ∈ F.

Observe that f (y) ≤ 0, f (x0) < 0, and

x = (1 − λ)y + λx0,

where λ = ε
1+ε

> 0. Because f is convex, we have

f (x) ≤ (1 − λ) f (y) + λ f (x0) < 0

which proves that x ∈ G. Therefore int(F) ⊆ G, whenever G , ∅. ^

Definition 1.12. The problem (1.9) is said to satisfy the Slater’s condition if

{x ∈ A | f1(x) < 0, . . . , fn(x) < 0} , ∅.

In the following theorem, we use the Lagrange function L : X × Rn+1 → R which is
given by

L(x, λ0, . . . , λn) := λ0 f0(x) + . . . + λn fn(x).

Theorem 1.13 (Kuhn–Tucker). Suppose x ∈ A ∩ F.
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(a) If x is a solution to the convex minimization problem (1.9), then there exist nonnegative
scalars λ0, . . . , λn, not all zero, such that

λ j f j(x) = 0, 1 ≤ j ≤ n. (1.10)

and
L(x, λ0, . . . , λn) = min

x∈A
L(x, λ0, . . . , λn) (1.11)

If, in addition, the Slater’s condition holds, then λ0 > 0.

(b) Assume that (1.10) and (1.11) hold with λ j ≥ 0, 1 ≤ j ≤ n, and λ0 = 1. Then x is a
solution to problem (1.9).

Proof. (a) Let C be the set of elements (y0, y1, . . . , yn) ∈ Rn+1 that satisfy

f0(x) − f0(x) < y0, f1(x) ≤ y1, . . . , fn(x) ≤ yn,

for some x ∈ A. Then C is convex, because A and the functions f0, . . . , fn are convex.
Since x ∈ A ∩ F,

y j > 0, 0 ≤ j ≤ n, ⇒ (y0, . . . , yn) ∈ C. (1.12)

In addition, 0 < C. Indeed, if 0 ∈ C, then there would exist x′ ∈ A such that f0(x′) < f0(x)
and x′ ∈ F. This is a contradiction because f attains its minimum at x.

By Theorem A.6, there is a hyperplane that separates C and {0}, that is, for some λ =

(λ0, . . . , λn) , 0
〈λ | y〉 ≥ 0 ∀y ∈ C.

From (1.12), we conclude that λ j ≥ 0 for each j.

We now show (1.10). Suppose fk(x) < 0 for some 1 ≤ k ≤ n. Put yk = fk(x),

y j = 0 j ≥ 1, j , k,

and y0 = ε, where ε > 0. Then (y0, y1, . . . , yn) ∈ C, because x ∈ A ∩ F, and hence

λ0ε + λk fk(x) ≥ 0.

By letting ε ↓ 0, we have λk fk(x) ≥ 0 thus λk ≤ 0. Since we had concluded that λk ≥ 0,
we indeed have

fk(x) < 0 ⇒ λk = 0.

Therefore (1.10) holds.

For each x ∈ A, put z j = f j(x) for 1 ≤ j ≤ n, and

z0 = f0(x) − f0(x) + ε,

where ε > 0. Then (z0, z1, . . . , zn) ∈ C and

λ0( f0(x) − f0(x) + ε) + λ1 f1(x) + . . . + λn fn(x) ≥ 0
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By letting ε ↓ 0, we have
L(x, λ0, . . . , λn) ≥ λ0 f0(x).

Therefore (1.11) follows due to (1.10).

Suppose now the Slater’s condition holds. Recall that λ0, . . . , λn are nonnegative and not
all zero. If λ0 = 0, then L(x, λ0, . . . , λn) = 0 and

L(x, λ0, . . . , λn) < 0

for some x ∈ A. This is a contradiction to (1.11), then λ0 > 0.

(b) Let x ∈ A ∩ F. In particular, x ∈ F and, because λ j ≥ 0, 1 ≤ j ≤ n,

n∑
j=1

λ j f j(x) ≤ 0.

Finally, due to (1.10) and (1.11),

f0(x) = L(x, 1, λ1, . . . , λn)

≤ L(x, 1, λ1, . . . , λn)
≤ f0(x)

for each x ∈ A ∩ F.
�

Exercises
1.1 Let f , g : S → R be convex functions, where S ⊆ Rn is convex. Show the following:

(a) If c is a nonnegative real number, then f + cg is convex.

(b) If F : R→ R is convex and increasing, then F ◦ f is convex.

(c) If G : R→ R is concave and decreasing, then G ◦ g is concave.

1.2 Show that f : Rn → R is convex if and only if its epigraph

{(x, y) ∈ Rn+1 | y ≥ f (x)}

is convex.

1.3 Prove that f (x) = |x| is convex in Rn. Is f strictly convex? What about g(x) = |x|2?

1.4 Show that the set of minimizers (which could be empty) of any convex function is convex.
Prove also that strictly convex functions have at most one global minimizer.

1.5 Let fn : R→ R be a convex function for each n ∈ N. Prove the following assertions.
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(a) If ( fn) converges to f (pointwise), then f is convex.

(b) If F(x) := supn≥1 fn(x) is finite for each x ∈ J, then F is convex.

1.6 (Least squares) Let A ∈ Mm×n, with m > n, and b ∈ Rm. The system Ax = b usually
does not have a solution x ∈ Rn, then an alternative is to find the least-squares solution
x̂—if it exists—, that is,

|Ax̂ − b|2 = min
x∈Rn
|Ax − b|2.

Assume rank(A) = n and prove that there exists a unique global minimizer x̂, given by

x̂ = (A>A)−1A>b.

Hint: Since rank(A) = n, use the fact that M>M is invertible.

1.7 Let a ∈ Rn, a , 0. Use the Lagrange multipliers method to find the unique solution to
the problem

min
x∈Rn
{a>x : |x|2 = 1}.

Hint: Use also the Cauchy-Schwarz inequality.

1.8 (Spectral theorem) Let A ∈ Mn(R) be a symmetric matrix.

(a) Use Lagrange multipliers to show that there exists λ1 ∈ R and u1 ∈ R
n, |u1| = 1, such

that
Au1 = λ1u1

and
x ∈ Rn, |x| = 1 ⇒ x>Ax ≥ λ1. (1.13)

(b) Show that λ1 is the smallest eigenvalue of A.

(c) Show that exists λ2 ∈ R and u2 ∈ R
n, |u2| = 1, such that

Au2 = λ2u2

and
u>2 u1 = 0.

Hint: Consider W1 = {x ∈ Rn | x>u1 = 0}, verify that Ax ∈ W1 for every x ∈ W1, and find a minimizer
u2 of x>Ax in some compact subset of W1.

(d) Prove that there exist an orthonormal basis {u1, . . . , un} ofRn and a vector (λ1, . . . , λn)>

such that
Au j = λ ju j, 1 ≤ j ≤ n.

1.9 Let A ∈ Mn(R) be a symmetric matrix. Prove the following:

(a) tr(A) :=
∑n

j=1 A j j =
∑n

j=1 λ j.

Hint: Recall Exercise 1.8(d) to show that AU = UΛ, where Λ is diagonal and the columns of U are
eigenvectors.
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(b) A is positive semidefinite if and only if its eigenvalues are nonnegative.

(c) A is positive definite if and only if its eigenvalues are positive.

1.10 Let h : Rn → R be a differentiable function. Consider the problem

inf{h(x) | x ∈ Rn}.

In numerical analysis, a vector v ∈ Rn \ {0} is said to be a descent direction of f at a if
Dvh(a) < 0. If ∇h(a) , 0, then −∇h(a) is called the steepest-descent direction of h at a.
Justify these names by proving the following:

(a) If Dvh(a) < 0, then there exists t0 > 0 such that

h(a + tv) < h(a) ∀t ∈ (0, t0].

(b) There exists a solution to
min
v∈Rn
{Dvh(a) : |v|2 = 1},

and such a solution is given by −∇h(a)/|∇h(a)|.



Chapter 2

Semicontinuous functions

Definition 2.1. Let (X, d) be a metric space. The function f : X → (−∞,∞] is lower semi-
continuous (lsc) on X if

{x ∈ X | f (x) > α}

is open for every α ∈ R. Likewise, f is upper semicontinuous (usc) if − f is usc.

Clearly, f : X → (−∞,∞] is lsc on X if and only if

{x ∈ X | f (x) ≤ α}

is closed for every α ∈ R.
In the following proposition, X × R is endowed with the product topology. A char-

acterization of lower semicontinuity is given by means of the epigraph of the function
f : X → (−∞,∞]

epi( f ) := {(x, y) ∈ X × R | y ≥ f (x)}.

Proposition 2.2. Let (X, d) be a metric space. The function f : X → (−∞,∞] is lsc if and
only if epi( f ) is closed.

Proof. Assume first that f is lsc. Pick any sequence (xn, yn) ∈ epi( f ), n ∈ N, with

(xn, yn)→ (x, y).

Let ε > 0. Then
yn < y + ε, n ≥ N,

for some N ∈ N, and hence

f (xn) ≤ yn < y + ε, n ≥ N. (2.1)

Since f is lsc, the set {x ∈ X | f (x) ≤ y + ε} is closed, thus (2.1) yields

f (x) ≤ y + ε.

By letting ε ↓ 0, we have (x, y) ∈ epi( f ). This proves that epi( f ) is closed.

10
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Conversely, assume epi( f ) is closed. Let α ∈ R and pick (xn) any sequence in X with

f (xn) ≤ α, n ∈ N,

and xn → x. Notice that (xn, α) ∈ epi( f ) and (xn, α) → (x, α). Then f (x) ≤ α because epi( f )
is closed. This proves that

{x ∈ X | f (x) ≤ α}, α ∈ R,

is closed. �

Theorem 2.3. Let (X, d) be a metric space. The function f : X → (−∞,∞] is lsc if and only
if, for each x ∈ X and any xk → x,

lim inf
k→∞

f (xk) ≥ f (x).

Proof. Assume f is lsc. Let x ∈ X and xk → x. For each ε > 0, consider the real number

rε :=
{

f (x) − ε if f (x) ∈ R,
1/ε if f (x) = ∞.

Notice that x is an element of the open set {y ∈ X | f (y) > rε}, thus there exists δ > 0 such
that

d(y, x) < δ =⇒ f (y) > rε.

Since xk → x,
f (xk) > rε ∀k > K,

for some K ∈ N. Hence lim infk→∞ f (xk) ≥ rε and, by letting ε ↓ 0, we obtain

lim inf
k→∞

f (xk) ≥ f (x).

For the converse assertion, let α ∈ R. Pick any sequence (xk) in X with

f (xk) ≤ α, k ∈ N,

and xk → x. Observe that
lim inf

k→∞
f (xk) ≤ α.

On the other hand,
lim inf

k→∞
f (xk) ≥ f (x).

Therefore f (x) ≤ α. This proves that

{y ∈ X | f (y) ≤ α}, α ∈ R,

is closed. �
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2.1 Existence of minimizers
Lemma 2.4. Let (X, d) be a compact metric space. If f : X → (−∞,∞] is lsc, then f is
bounded below, i.e., there exists α0 ∈ R such that

f (x) ≥ α0, ∀x ∈ X.

Proof. Since f is lsc, ∪α∈R{x ∈ X | f (x) > α} is an open cover of X. Then the compactness of
X yields the desired conclusion. �

Theorem 2.5. Let (X, d) be a metric space and f : X → (−∞,∞] be an lsc function. If there
exists r ∈ R such that

S r := {x ∈ X | f (x) ≤ r}

is nonempty and compact, then the set of global minimizers is nonempty and compact.

Proof. The restriction of f to S r satisfies the hypotheses of Lemma 2.4, thus

l := inf{ f (x) | x ∈ S r}

is a real number. For each n ∈ N, there is xn ∈ S r such that

l ≤ f (xn) < l +
1
n
.

Since S r is compact, the sequence (xn) has a convergent subsequence, say xnk → x0, with
x0 ∈ S r. Then

f (x0) ≤ lim inf
k→∞

f (xnk) ≤ l

because f is lsc. This actually proves that f (x0) = l. Observe that f (x) > r for every x < S r,
then we have

f (x0) ≤ f (x) ∀x ∈ X.

Moreover,
{x̂ ∈ X | f (x̂) ≤ l}

is a closed subset of the compact set S α, then the set of global minimizers is nonempty and
compact. �

Let (X, d) be a metric space. If f : X → (−∞,∞] is not identically ∞, then f is a proper
function.

Corollary 2.6. Let (X, d) be a compact metric space. If f : X → (−∞,∞] is proper and lsc,
then there exists x̂ ∈ X such that

f (x̂) ≤ f (x) ∀x ∈ X.

Definition 2.7. Let (X, ‖ · ‖) be a normed space. The function f : X → R is coercive if

lim
‖x‖→∞

f (x) = ∞.

Theorem 2.8. Let (X, ‖ · ‖) be a finite dimensional normed space (over R or C). If f : X → R
is lsc and coercive, then f attains its global minimum in X.
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2.2 Ekeland’s variational principle
Theorem 2.9 (Ekeland’s variational principle). Let (X, d) be a complete metric space and let
f : X → (−∞,∞] be a proper, bounded below, and lsc function. Assume that ε > 0 and
x0 ∈ X satisfy

f (x0) 6 ε + inf
x∈X

f (x). (2.2)

Then, for each λ > 0, there exists x ∈ X such that

f (x) 6 f (x0), (2.3)
d(x, x0) 6 λ, (2.4)

f (x) < f (x) +
ε

λ
d(x, x) ∀x ∈ X \ {x}. (2.5)

Proof. For each x ∈ X, consider the set

S (x) :=
{
y ∈ X

∣∣∣∣ y , x, f (x) ≥ f (y) +
ε

λ
d(y, x)

}
.

Notice that y ∈ S (x) implies f (y) < f (x). On the other hand, if S (x) = ∅ for some x ∈ X, then
x satisfies (2.5).

Step 1. If x′ ∈ S (x0), then d(x′, x0) ≤ λ.
Indeed,

ε

λ
d(x′, x0) ≤ f (x0) − f (x′)

≤ ε + inf
X

f − f (x′)

≤ ε,

which yields the required inequality.

Step 2. There exists a sequence (xn) in X such that

xn ∈ S (xn−1) ∪ {xn−1}, n ≥ 1. (2.6)

Furthermore, for each n ≥ 1,

S (xn−1) , ∅ ⇒ xn ∈ S (xn−1), (2.7)

and
xn , xn−1 ⇒ f (xn) < εn + inf

S (xn−1)
f , (2.8)

where
εn :=

1
2

[ f (xn−1) − inf
S (xn−1)

f ]

We inductively define the sequence (xn). Suppose that, for n ≥ 1, xn−1 is known—recall
that x0 is given. If S (xn−1) = ∅, then set xn = xn−1. Otherwise, infS (xn−1) f is a well-defined
real number and εn is strictly positive, thus there is xn ∈ S (xn−1) such that

f (xn) < εn + inf
S (xn−1)

f .



CHAPTER 2. SEMICONTINUOUS FUNCTIONS 14

Step 3. Suppose (xn) satisfies (2.7). If S (xk) = ∅ for some k ≥ 0, then there is k̂ such that
x := xk̂ verifies (2.3), (2.4), and (2.5).

If S (x0) = ∅, then x = x0 verifies the required inequalities. Suppose S (x0) , ∅ but
S (xk) = ∅ for some k ≥ 1. Let

k̂ = min{1 ≤ j ≤ k | S (x j) = ∅}.

Then S (xk̂) = ∅ and x = xk̂ satisfies (2.5). Since xk ∈ S (xk−1), for 1 ≤ k ≤ k̂,

ε

λ
d(x0, x1) ≤ f (x0) − f (x1)

...
ε

λ
d(xk̂−1, xk̂) ≤ f (xk̂−1) − f (xk̂).

By adding these inequalities up and using the triangle inequality, we have

ε

λ
d(xk, xk̂) ≤ f (xk) − f (xk̂), 0 ≤ k < k̂, (2.9)

In particular, we see that xk̂ ∈ S (x0). Thus x = xk̂ satisfies (2.3) and, by Step 1, (2.4) also
holds.

Step 4. Suppose (xn) satisfies (2.7) and (2.8). If S (xk) , ∅ for every k ≥ 0, then (xn) is
convergent and x = limn→∞ xn verifies (2.3), (2.4), and (2.5).

By property (2.7), we have

ε

λ
d(xk, xn) ≤ f (xk) − f (xn), k < n. (2.10)

Then f (xn) < f (xn−1), for every n ≥ 1, and hence ( f (xn)) converges—because it is a decreas-
ing and bounded-below sequence. Moreover, since ( f (xn)) is a Cauchy sequence so is (xn)
because of (2.10). Since X is complete, there exists x = limn→∞ xn and

lim
n→∞

f (xn) ≥ f (x)

due to the lower semicontinuity of f . On the other hand, fix k and let n → ∞ in (2.10) to
obtain

f (x) +
ε

λ
d(xk, x) ≤ f (xk), (2.11)

that is, x ∈ S (xk) for each k ≥ 0. In particular, x ∈ S (x0), then x satisfies (2.3) and (2.4).
Suppose x does not satisfy (2.5), that is, there exists x′ ∈ S (x). Then

f (x′) < f (x) (2.12)

and
f (x′) +

ε

λ
d(x′, x) ≤ f (x).
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The latter inequality along with (2.11) imply that x′ ∈ S (xk) for every k. From (2.8),

2 f (xk+1) − f (xk) < inf
S (xk)

f ∀k,

hence 2 f (xk+1) − f (xk) < f (x′) and, by letting k → ∞,

f (x) ≤ lim
k→∞

f (xk) ≤ f (x′).

This inequality contradicts (2.12). We conclude that x indeed satisfies (2.5).
Therefore the sequence defined in Step 2 is convergent—by Steps 3 and 4—and its limit

satisfies the theorem. �

Corollary 2.10. Let (X, d) be a complete metric space and let f : X → (−∞,∞] be a proper,
bounded below, and lsc function. For each ε > 0, there exists x ∈ X such that

f (x) < f (x) +
√
εd(x, x) ∀x ∈ X \ {x}. (2.13)

The following result, also known as Banach’s Fixed Point Theorem, follows from Eke-
land’s variational principle (EVP).

Theorem 2.11 (Contraction mapping principle). Let (X, d) be a complete metric space and
let F : X → X be a contraction mapping, that is, there is 0 < β < 1 such that

d(F(x), F(y)) ≤ βd(x, y) ∀x, y ∈ X. (2.14)

Then F has a unique fixed point x, i.e., F(x) = x.

Proof. Let f (x) := d(x, F(x)), for each x in X, and ε := (1 − β)2/2. Thus
√
ε + β < 1. (2.15)

By Corollary 2.10 to EVP, there exists x such that

d(x, F(x)) < d(x, F(x)) +
√
εd(x, x) ∀x , x.

Suppose x , F(x). Then, by the latter inequality and (2.14),

d(x, F(x)) < (β +
√
ε)d(x, F(x))

which contradicts (2.15). Therefore x = F(x).
Concerning uniqueness, if F(x′) = x′, then

d(x, x′) = d(F(x), F(x′)) ≤ βd(x, x′)

and hence d(x, x′). This proves the theorem. �
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Exercises
2.1 Let F be a collection of lsc functions on the metric space (X, d). Show that

F(x) := sup{ f (x) | f ∈ F }, x ∈ X,

is lsc.

Hint: Notice that {x ∈ X | F(x) > α} = ∪ f∈F {x ∈ X | f (x) > α}.

2.2 Let f , g : X → (−∞,∞] be lsc functions on the metric space (X, d). If r > 0, then show
that r f and f + g are lsc.

2.3 Prove that f : X → R is continuous if and only if f is both l.s.c. and u.s.c.

2.4 Let A be a subset of the metric space (X, d). Consider the function

IA(x) =

{
0 if x ∈ A,
∞ if x < A.

Show that IA is lsc if and only if A is closed.

2.5 Let (X, d) be a metric space and ∅ , A ⊆ X. Define

d(x, A) := inf
a∈A

d(x, a) x ∈ X. (2.16)

Prove the following:

(a) d(x, A) ≤ d(x, y) + d(y, A) for every x, y ∈ X,

(b) the function d(·, A) : X → R is uniformly continuous,

(c) if A is closed and d(x, A) = 0, then x ∈ A.

2.6 Let (X, d) be a metric space, f : X → R, and g : R→ R.

(a) Give an example of lsc functions f and g such that g ◦ f is not lsc.

(b) Suppose f is continuous and g is lsc. Prove that g ◦ f is lsc.

2.7 (The Fundamental Theorem of Algebra [3, 1, 5]). Let p(z) = anzn + . . . + a1z + a0

be a polynomial with complex coefficients, an , 0 and n ≥ 1. Define the function
f (z) := |p(z)| for each z ∈ C.

(a) Show that f has a global minimizer.
Hint: Show that f is coercive.

(b) Find explicitly one (there could be more) global minimizer of f when (i) p(z) =

a1z + . . . + anzn, that is a0 = 0, and (ii) p(z) = a0 + akzk with ak , 0.



CHAPTER 2. SEMICONTINUOUS FUNCTIONS 17

(c) Let z0 ∈ C. Explain why there exist complex numbers c0, c1, . . . , cn such that

p(z) = c0 + c1(z − z0) + . . . + cn(z − z0)n.

Hint: Write p(z) = p((z − z0) + z0) .

Further, prove that, for some k = 1, . . . , n,

p(z) = c0 + ck(z − z0)k + (z − z0)k+1q(z),

where ck , 0 and q is a polynomial.

(d) Let z0 be a global minimizer of f , t ∈ (0, 1), and w ∈ C satisfies c0 + ckwk = 0.
Suppose f (z0) > 0, that is, c0 , 0. Show that

f (z0 + tw) ≤ |c0|(1 − tk) + |tw|k+1|q(z0 + tw)|

and
t|wk+1q(z0 + tw)| < |c0|

for some t small enough.

(e) Prove the Fundamental Theorem of Algebra.

2.8 (Baby EVP [2]) Let X be a finite-dimensional vector space. Suppose f : X → R is lsc
and bounded below. Let ε > 0 and x0 ∈ X satisfy

f (x0) ≤ inf f + ε. (2.17)

Prove (without using Ekeland’s variational principle!) that there exists x ∈ X such that

(i) f (x) ≤ f (x0),

(ii) |x − x0| ≤
√
ε, and

(iii) f (x) ≤ f (x) +
√
ε|x − x| for all x ∈ X.

In order to accomplish the proof, proceed as follows:

(a) Show that g(x) = f (x) +
√
ε|x − x0| has a global minimizer x in X.

Hint: Show that g is coercive and lsc.

(b) Use the inequality g(x) ≤ g(x0) to prove (i) and (ii).

(c) Finally, use (a) to prove (iii).
Hint: Notice that |x − x0| ≤ |x − x| + |x − x0|.



Appendix A

Convexity in Rn

A.1 Continuity of convex functions
Theorem A.1. Let f : S → R be a convex function. If x0 is an interior point of S , then f is
continuous at x0.

Proof. Let {ek | k = 1, . . . , n} be the canonical basis of Rn. Since x0 is an interior point of S ,
there exists ε > 0 such that B1(x0, ε) ⊆ S . Define, for k = 1, . . . , 2n,

dk =

{
εe k+1

2
if k is odd,

−εe k
2

if k is even,

and M := max{ f (x0 + dk) | k = 1, . . . , 2n}. Then

f (x) ≤ M ∀x ∈ B1(x0, ε). (A.1)

On the other hand, let {xk} ⊆ S be any sequence converging to x0. Then there exists K
such that xk ∈ B1(x0, ε) for every k ≥ K. Furthermore,

xk = λkx0 + (1 − λk)yk, k ≥ K,

for some λk ∈ [0, 1] and yk such that ‖yk − x0‖1 = ε. Notice that

lim
k→∞
‖(1 − λk)(yk − x0)‖ = 0,

that is, limk→∞(1 − λk) = 1. Since f is convex,

f (xk) ≤ λk f (x0) + (1 − λk) f (yk), k ≥ K,

thus, by (A.1), limk→∞ f (xk) ≤ f (x0).
On the other hand, the inequality limk→∞ f (xk) ≥ f (x0) can be obtained by considering

convex combinations of the form x0 = θkxk + (1 − θk)zk with ‖zk − x0‖ = ε. Therefore
limk→∞ f (xk) ≤ f (x0) ≤ limk→∞ f (xk) implies the continuity of f at x0. �

Corollary A.2. Let f : S → R be a convex function. If S is open, then f is continuous on S .

18
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A.2 Convex functions of class C2

Theorem A.3. Let f : S → R be a C2 function, where S ⊆ Rn is open and convex.

(a) f is convex in S if and only if D2 f (x) is positive semidefinite for every x ∈ S .

(b) If D2 f (x) is positive definite for every x ∈ S , then f is strictly convex.

Proof. Let x ∈ S and h ∈ Rn.

(a) Suppose that f is convex on S and fix x ∈ S . Let h ∈ Rn, h , 0. Then we can choose
N ∈ N such that

x + n−1h ∈ S ∀n ≥ N.

Since S is convex, by Taylor theorem, there exists θn ∈ (0, 1) such that

f (x + n−1h) = f (x) + n−1D f (x)h +
1
2

n−2h>D2 f (x + θnn−1h)h, ∀n ≥ N.

Theorem 1.7 implies

h>D2 f (x + θnn−1h)h ≥ 0, ∀n ≥ N. (A.2)

Notice that, when n→ ∞, |θnn−1h| → 0 and hence

lim
n→∞

D2 f (x + θnn−1h) = D2 f (x)

because f is of class C2. Then, by letting n→ ∞ in (A.2), it follows that

h>D2 f (x)h ≥ 0.

This proves that D2 f (x) is positive semidefinite at x.

Conversely, by Taylor theorem, with h = x − a,

f (x) = f (a) + D f (a) · (x − a) +
1
2

(x − a)>D2 f (a + θ(x − a)) · (x − a) (A.3)

for some θ ∈ (0, 1). Since D2 f (·) is positive definite, then f (x) − f (a) ≥ D f (a) · (x − a)
for each x, a ∈ S . Therefore f is convex by Theorem 1.7.

(b) It follows from (A.3) and Theorem 1.7.

�
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A.3 Separation theorems
Definition A.4. Let p ∈ Rn \ {0} and β ∈ R. The hyperplane determined by p and β is the set

H(p, β) := {x ∈ Rn | 〈p, x〉 = β}.

Theorem A.5. Let C ⊆ Rn be a nonempty, convex, and closed set. If y ∈ Rn \ C, then there
exists a hyperplane H(p, α), p , 0, that separates y from C, that is,

〈p, y〉 < α ≤ 〈p, c〉 ∀c ∈ C.

Furthermore, there exists a hyperplane H(p, β), p , 0, that strictly separates y from C, that
is,

〈p, y〉 < β < 〈p, c〉 ∀c ∈ C.

Proof. Since C is closed, there exists c0 ∈ C such that 0 < ‖y − c0‖ ≤ ‖y − c‖ for every c ∈ C.
Define p := c0 − y and α := 〈p, c0〉 . Notice that p , 0 and

〈p, y〉 = α − ‖p‖2 < α.

For any c ∈ C and λ ∈ (0, 1], the point cλ := (1 − λ)c0 + λc belongs to C. Then

‖y − c0‖
2
≤ ‖y − cλ‖2

= ‖y − c0 + λ(c0 − c)‖2

= ‖y − c0‖
2 + λ2 ‖c0 − c‖2 + 2λ 〈y − c0, c0 − c〉 ,

which is equivalent to 2 〈p, c0 − c〉 ≤ λ ‖c0 − c‖2 . By letting λ→ 0, we obtain

〈p, y〉 < α ≤ 〈p, c〉 .

The second part of the theorem follows for any β in the interval (〈p, y〉 , α). �

Theorem A.6. Let C ⊆ Rn be a nonempty and convex set. If y < C, then there exists a
hyperplane H(p, β) that separates y from C, that is,

〈p, y〉 ≤ β ≤ 〈p, c〉 ∀c ∈ C.

Proof. Notice first that the closure C of C is also convex. Further, there exists c0 ∈ C such
that ‖y − c0‖ ≤ ‖y − c‖ for every c ∈ C.

There are two cases for y, (i) y < C and (ii) y lies in the boundary of C. Theorem A.5
implies the desired result for case (i). Assume (ii) y is a boundary point of C, then there is
a sequence {yk} ⊆ R

n \ C that converges to y. By Theorem A.5, there exists a hyperplane
H( p̃k, β̃k), p̃k , 0, that separates C from yk, k ∈ N. Notice that H(pk, βk), with

pk :=
p̃k

‖ p̃k‖
, βk :=

β̃k

‖ p̃k‖
,

also separates C from yk, for each k ∈ N. Then we can pick a subsequence {pkl} of {pk} such
that limk→∞ pkl = p, for some p with ‖p‖ = 1. Therefore H(p, β) separates y from C, where
β := 〈p, y〉. �
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Theorem A.7 (Separating hyperplane theorem). Let A and B be nonempty convex sets in Rn

such that A ∩ B = ∅. Then there exists a hyperplane that separates A and B.

Proof. Let D = A − B := {x − y | x ∈ A, y ∈ B}. Then D is a convex set and 0 < D. By
Theorem A.6, there is a hyperplane H(p, α) such that

〈p, x − y〉 ≤ α ≤ 0 ∀x ∈ A, y ∈ B.

Define β := sup{〈p, x〉 | x ∈ A}. Therefore the hyperplane H(p, β) separates A and B. �

Exercises
A.1 Let A ⊆ Rn and B ⊆ Rm be convex sets. Prove that A × B is convex in Rn+m.

A.2 Show any open ball Bε(x) in Rn is a convex set.

A.3 Let A ⊆ Rn be a convex set and denote by int(A) the set of its interior points. Is int(A) a
convex set?

A.4 Show that the simplex {(λ1, . . . , λn) ∈ Rn
+ |

∑n
j=1 λ j = 1} is convex and compact.

A.5 Let f : Rn → R be a convex function. If f (0) = 0 and f is an even function ( f (x) = f (−x)
for every x ∈ Rn), show that f (x) ≥ 0 for every x ∈ Rn.

A.6 Let f (x, y) = (x−ρ + y−ρ)−1/ρ for (x, y) ∈ R2
++ and ρ , 0. Show that f is

(a) concave if ρ ≥ −1,

(b) convex if ρ ≤ −1.

A.7 Let f : R→ R be a concave function. Show that x1 < x2 < x3 implies

f (x2) − f (x1)
x2 − x1

≥
f (x3) − f (x1)

x3 − x1
≥

f (x3) − f (x2)
x3 − x2

.

Hint: Consider the convex combination x2 = λx3 + (1 − λ)x1, where λ =
x2−x1
x3−x1

.

A.8 If x1, · · · , xk are positive real numbers, show that

k
√

x1 · · · xk ≤
x1 + . . . + xk

k
.

A.9 (Sydsæter et al. [4]) Consider the Cobb–Douglas function

f (x) = xα1
1 xα2

2 · · · x
αn
n

defined on Rn
++ for αi > 0 (i = 1, 2, . . . , n).
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(a) Show that the kth leading principal minor of the Hessian H f (x) is

Hk f (x) = [ f (x)]k α1 · · ·αk

(x1 · · · xk)2

∣∣∣∣∣∣∣∣∣∣∣∣
α1 − 1 α1 · · · α1

α2 α2 − 1 · · · α2
. . .

αk αk · · · αk − 1

∣∣∣∣∣∣∣∣∣∣∣∣ .
(b) Show indeed that Hk f (x) = [− f (x)]k[1 −

∑k
i=1 αi] α1···αk

(x1···xk)2 .

(c) Prove that f is strictly concave if α1 + . . . + αn < 1.
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