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Chapter 1

Basics of optimization in R”

1.1 Necessary conditions

Definition 1.1. Let X CR" and f : X — R. The point x € X is a local minimizer of f if there
is a ball Bs = {x € R" | |x — x| < 8} around X such that

f(®) < f(x) Vx € Bs N X.
The proof of the following proposition follows from the latter definition.

Proposition 1.2. Let X be an open subset of R" and f : X — R. If X € X is a local minimizer
of f and there exists the directional derivative

n fE ) = )
0 t

D f(®) =1
tll

for some v e R", v # 0, then
D! f(%) > 0.

If; in addition, there exists the two-sided directional derivative

JE+ 1) - f(3)
» ;

D,f(%) := lim
t—0

then D, f(x) = 0.
Corollary 1.3. Let X be an open subset of R". If X € X is a local minimizer of the differen-
tiable function f : X — R, then
Vf(x) =0.
1.2 Minimization of convex functions

The subset X of R" is convex if for each x,y € X and A € [0, 1],

Ax+ (1 -DyeX.
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Definition 1.4. A function f : J — R is called

(a) convex if for every x,y € Jand A € [0, 1]
fQx+ (1 -y <Af(x) + (1 - Df(); (1.1)

(b) strictly convex if the inequality is strict for x # y and 4 € (0, 1).

Proposition 1.5. Let M be a convex subset of R". If f : M — R is a convex function, then
any local minimizer is a global minimizer.

Proof. Let x be a local minimizer of f, thus
J® < fO), YyeMnU,
where U is some open subset of X. If x € M, then thereisy € MN U and 0 < A4 < 1 such that

y=Ax+ (1 - D)x.

Then
J&® <)
<A@+ A -Df (),
that is, (1 — ) f(X) < (1 — A) f(x). Therefore f(X) < f(x) for each x € M. O

Lemma 1.6. Let f : S — R be a C' function, where S is an open and convex subset of R".
The function f is convex in S if and only if

f(x)— f(a) 2{Df(a),x—a) Vx,a€eS. (1.2)
Likewise, f is strictly convex if and if the inequality is strict for every x # a.

Proof. Suppose that f is convex in S. Then for every x,a € § and 1 € (0, 1]

fla+Ax—a)) - fla)
1 :

Jx) = fla) 2

Letting 4 — 0%, we obtain (I.2).
Conversely, let x,a € S and A € [0, 1]. Define x, := Ax + (1 — A)a, then (1.2) yields

J() = f(x) 2 (Df(x2), x = x2),
f@) = f(x) 2 (Df(x2), a = xa).

Therefore

ALf ) = fx)] + (1 = D[f(a) = f(x)] 2 (Df(xp), Ax — x3) + (1 = D(a — xy)).
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Since A(x — x;) + (1 — D)(a — x;) = 0, it follows that
Af(x)+ (1 =D f(a) = f(Ax+ (1 = Da).

We now show the second equivalence. Suppose first that f is strictly convex and pick
x,a € § with x # a. By (2?), with " =1,

fla+Ax-a) - fla)
A

< f(x) = f(a), 0<A<1,

then

fla+Ax-a) - fla)
A

f(0) - f(@) > inf
= Df(a)- (x~a).

For the converse, assume (??) holds for any pair of different points. Pick x,a € S, with x # a.
Then, for each 1 € (0, 1),

J(x) = f(x)) > Df(xa) - (x = xp),
f@) = f(xp) > Df(xa) - (a = xp),
since x, # a. Hence, as above,
Af(x)+ (1 =) f(a) > f(Ax+ (1 = Da), A€ (,]1).
This completes the proof. O

Theorem 1.7 (First—order necessary and sufficient condition). Let X, U be sets in R" such
that X C U, X is convex, and U is open. Let f : U — R be differentiable on U and convex on
X. Then x* is a global minimizer of f in X if and only if

Df(x")-(x=x")>0 VxelX (1.3)

Proof. Suppose first that x* is a minimizer of f and pick any x € X. Since f is differentiable,
there exists Dy f(x*) = Df(x*) - v, with v = x — x*; by Proposition[1.2] Df(x") - (x — x*) > 0.
Conversely, if (I.3) holds, then by Proposition[I.6]

f) = f(X)+Df(x") - (x—x") > f(x) VYxeX.

Therefore x* is a global minimizer of f in X. O

1.3 Lagrange multipliers

Theorem 1.8 (Lagrange). Let f : U — Rand g : U — R™ be of class C', where U is an
open subset of R" and m < n. If Z is a local minimizer to problem

min{f(z) | §(z) = 0} (1.4)

and rank(Dg(Z)) = m, then there is a unique A € R™ such that
Df(2) = A" Dg(2). (1.5)
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Proof. Let us rewrite the optimization problem as

(g;)ierlu{f(x’ ») | g(x,y) =0}

where x € R"™™ and y € R™. Since rank(Dg(%,$)) = m, where (%,9) = 2 is the given local
minimizer, we can assume that the m rows of D,g(%,y) are l.i.—otherwise the variables can
be reordered. Then by the Implicit Function Theorem, there exists a local implicit C' function
h such that g(x, h(x)) = 0, with h(X) = y, and

Dh(%) = ~[Dyg(3, )" - D&%, 9)-

On the other hand, X is a local minimizer of the function F(x) := f(x, h(x)) and so
DF (%) = 0. By the Chain Rule, D, f(X, h(%X)) + D, f(%, h(X)) - Dh(X) = 0, that is,

D.f(%,9) = D, f(£.9) - [Dyg(%. )] - D1g(%.9).
The result follows by defining AT := D,f(%,9) - [Dyg(%, M. O

Proposition 1.9. Let f : U —» Rand g : U — R™ be differentiable, where U is an open and
convex subset of R". Suppose that % satisfies (1.5)) for some A € R™ and the function

x - f(x) + A g(x), xeU,

is convex, then X is a global minimizer to problem (1.4).

Proof. Tt follows from Theorem O

1.4 Inequality constraints

Let A be a nonempty convex subset of X and let f; : X — R be convex for j = 0,1,...,n.
Consider the convex minimization problem

Inffo(x), (1.6)

where
F:={xeX|filx)<0,..., fu(x) <0}

Remark 1.10. Let f : X — R U {oo} be a continuous convex function. Put
F={xeX| f(x)<0}

and
G={xeX]| f(x)<O0}L

Then G is open, because f is continuous, and G C F, hence

G C int(F).
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In general, int(F) # G. Take, for instance, f = 0. Nonetheless, if G # 0, then
int(F) = G.
Indeed, let x € int(F) and xy € G. Then there exists 0 < & < 1 such that
yi=x+e&lx—xy) €F.
Observe that f(y) <0, f(xp) < 0, and
x =1 -2y + Axo,
where 4 = ;2 > 0. Because f is convex, we have
J) <A =Df) +Af(x) <0
which proves that x € G. Therefore int(F') C G, whenever G # 0. 1

Definition 1.11. The problem (1.6)) is said to satisfy the Slater’s condition if
{(xeA| filkx)<O,..., fu(lx) <0} 0.

In the following theorem, we use the Lagrange function £ : X x R""! — R which is
given by
L(x, Agy ..., Ay) i= Ao fo(x) + ... + A fr(X).

Theorem 1.12 (Kuhn-Tucker). Suppose x € AN F.

(a) If X is a solution to the convex minimization problem (1.0)), then there exist nonnegative

scalars Ao, . .., A, not all zero, such that
Aifi(x) = 0, 1<j<n (1.7)
and B B B B
L(X,,...,4,) = miAnL(x, Aoy .oy Ap) (1.8)
XE

If, in addition, the Slater’s condition holds, then A, > 0.

(b) Assume that (I.7) and (L.8) hold with ;> 0, 1 < j < n, and Ay = 1. Then X is a solution
to problem (1.6).

Proof. (a) Let C be the set of elements (o, Vi, .. .,y,) € R"! that satisfy

Jo(x) = fo(x) <yo, i(x) <yi, ooy fulX) < Y,

for some x € A. Then C is convex, because A and the functions fy, ..., f, are convex.
Sincex€e ANF,
y;i>0,0<j<n, = (o....y) €C. (1.9)
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(b)

In addition, 0 ¢ C. Indeed, if 0 € C, then there would exist x” € A such that fy(x") < fo(x)
and x” € F. This is a contradiction because f attains its minimum at X.

By the Separation theorem, there is a hyperplane that separates C and {0}, that is, for
some A =(Ag,...,4,) #0 3
Alyy=0 Yy e C.

From (T.9), we conclude that 1; > 0 for each .
We now show (1.7). Suppose fi(x) < 0 for some 1 < k < n. Put y, = fi(%),
;=0 j=1, j#k,
and yy = &, where € > 0. Then (o, y1,...,y,) € C, because x € A N F, and hence
A€ + 4 fu(X) = 0.

By letting £ | 0, we have A Ji(x) = 0 thus A < 0. Since we had concluded that A, > 0,
we indeed have B
ix) <0 = A4 =0.

Therefore (1.7)) holds.
Foreach x € A, put z; = fj(x) for 1 < j <n, and

20 = fo(x) — foX) + &,
where £ > 0. Then (29, z1,...,2,) € C and
(fo(x) = foX) + &) + L fi(x) + ...+ 4, f,(x) = 0

By letting € | 0, we have
L(x, Ao, - -5 A,) = Ao fo ).
Therefore (1.8)) follows due to (1.7).
Suppose now the Slater’s cor@ition Ilolds. Recall that Ay, ..., A, are nonnegative and not
all zero. If Ay = 0, then L(x, Ag,...,4,) = 0 and

L(x,A,...,2,) <0

for some x € A. This is a contradiction to (T.8)), then 1y > 0.

Let x € AN F. In particular, x € F and, because Z,- >0,1<j<n,
D Aifi0 0.
=1

Finally, due to (1.7) and (1.8)),
fo® = L& 1L,A,...,4,)
< L, 1,410, 4,)
< fo(x)
foreachxe ANF.
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Exercises

1.1

1.2

1.3
1.4

L.5

1.6

1.7

1.8

Let f,g : S — R be convex functions, where S € R" is convex. Show the following:

(a) If c is a nonnegative real number, then f + cg is convex.
(b) If F : R — R s convex and increasing, then F o f is convex.

(c) If G : R — R s concave and decreasing, then G o g is concave.

Show that f : R* — R is convex if and only if its epigraph
{C,y) e R y > f(x)
1S convex.
Prove that f(x) = |x| is convex in R”. Is f strictly convex? What about g(x) = |x|>?

Show that the set of minimizers (which could be empty) of any convex function is convex.
Prove also that strictly convex functions have at most one global minimizer.

Let f, : R — R be a convex function for each n € N. Prove the following assertions.

(a) If (f,) converges to f (pointwise), then f is convex.

(b) If F(x) := sup,, f»(x) is finite for each x € J, then F is convex.

(Least squares) Let A € M,,x,, with m > n, and b € R™. The system Ax = b usually
does not have a solution x € R”, then an alternative is to find the least-squares solution
x—if it exists—, that is,
|A% — b|* = min|Ax — b[*.
xeR?

Assume rank(A) = n and prove that there exists a unique global minimizer X, given by
£=(ATA)'ATh.
Hint: Since rank(A) = n, use the fact that M M is invertible.

Leta € R", a # 0. Use the Lagrange multipliers method to find the unique solution to
the problem

min{a"x : [x]* = 1}.

xeR"

Hint: Use also the Cauchy-Schwarz inequality.
(Spectral theorem) Let A € M, (R) be a symmetric matrix.

(a) Use Lagrange multipliers to show that there exists 4; € R and u; € R”, |u;| = 1, such
that
Au1 = /lll/ll

and
xeR, xl=1 = x"Ax> 4. (1.10)
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(b) Show that 4, is the smallest eigenvalue of A.
(c) Show that exists A, € R and u, € R”, |uy| = 1, such that

AM2 = /12u2

and

u up = 0.
Hint: Consider Wy = {x € R" | x"uy = 0}, verify that Ax € W for every x € W\, and find a minimizer
up of x"T Ax in some compact subset of Wj.

(d) Prove that there exist an orthonormal basis {u, . .., u,} of R” and a vector (1;,...,4,)"
such that
Al/tj:/ljl/lj, 1 S]Sn

1.9 Let A € M,(R) be a symmetric matrix. Prove the following:

(a) t(A) := 3 Ay =Y 4.
Hint: Recall Exercise 1[8(d) to show that AU = UA, where A is diagonal and the columns of U are

eigenvectors.
(b) A is positive semidefinite if and only if its eigenvalues are nonnegative.

(c) A is positive definite if and only if its eigenvalues are positive.
1.10 Let 4 : R" — R be a differentiable function. Consider the problem
inf{h(x) | x e R"}.

In numerical analysis, a vector v € R" \ {0} is said to be a descent direction of f at a if
D,h(a) < 0. If Vh(a) # 0, then —Vh(a) is called the steepest-descent direction of h at a.
Justify these names by proving the following:

(a) If D,h(a) < 0, then there exists #, > 0 such that

h(a + tv) < h(a) vt € (0, 1].

(b) There exists a solution to
min{D,h(a) : vI* =1},
veR"

and such a solution is given by —Vh(a)/|Vh(a)|.



Appendix A

Convexity in R”

A.1 Continuity of convex functions

Theorem A.1. Let f : S — R be a convex function. If xq is an interior point of S, then f is
continuous at x.

Proof. Let{e | k=1,..., rﬁ be the canonical basis of R". Since x is an interior point of S,
there exists £ > 0 such that By(xy,&) € S. Define, fork=1,...,2n,

{ gews if kis odd,
de=1 3

—gey if k is even,
and M := max{f(xo+dy) | k=1,...,2n}. Then
f(x) <M Vx e Bi(x,¢). (A.1)

On the other hand, let {x;} C S be any sequence converging to xy. Then there exists K
such that x; € B;(x, €) for every k > K. Furthermore,

X = Axo + (1 = Ay, k> K,
for some A; € [0, 1] and y; such that ||y, — x¢||; = €. Notice that
lim 11 = 2 = %)l = 0,
that is, lim;_,(1 — A;) = 1. Since f is convex,
Jo) < A f(xo) + (1 = A)fw), k2K,

thus, by (A1), limy_e f(x0) < f(x0).

On the other hand, the inequality lim, | f(xx) > f(xo) can be obtained by considering
convex combinations of the form xy = 6,x; + (1 — G )z with |[zx — xol] = &. Therefore
Ek%@ S < f(xo) < lim, __ f(x;) implies the continuity of f at xo. O

Corollary A.2. Let f : S — R be a convex function. If S is open, then f is continuous on S.
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A.2 Convex functions of class C?

Theorem A.3. Let f : S — R be a C?* function, where S C R" is open and convex.
(a) fis convex in S if and only if D*f(x) is positive semidefinite for every x € S.
(b) If D*f(x) is positive definite for every x € S, then f is strictly convex.

Proof. Letx € § and h € R™.

(a) Suppose that f is convex on S and fix x € S. Let h € R", h # 0. Then we can choose
N € N such that
x+n'heS  YnxN.

Since S is convex, by Taylor theorem, there exists 6, € (0, 1) such that
f(x+n'h) = f(x) + n ' Df(x)h + %n_thDz f(x + 6,n" ' h)h, Vn > N.
Theorem [1.6] implies
h"D*f(x + 6,n"'h)h > 0, Vn > N. (A.2)
Notice that, when n — oo, |6,n~'h| — 0 and hence

lim D*f(x + 6,n"'h) = D*f(x)

n—oo

because f is of class C*. Then, by letting n — oo in (A-3), it follows that
h"D*f(x)h > 0.

This proves that D? f(x) is positive semidefinite at x.

Conversely, by Taylor theorem, with 4 = x — a,

1
f(x) = fla)+ Df(a)- (x—a) + 5(x = a)'D*f(a+6(x - a)) - (x - a) (A.3)

for some 6 € (0, 1). Since D*f(-) is positive definite, then f(x) — f(a) > Df(a) - (x — a)
for each x,a € S. Therefore f is convex by Theorem|[I.6

(b) It follows from (A.4) and Theorem |[I.6]



APPENDIX A. CONVEXITY INRY 11

A.3 Separation theorems

Definition A.4. Let p € R"\ {0} and 8 € R. The hyperplane determined by p and 3 is the set

H(p,p) :={x e R" | (p,x) = B}.

Theorem A.S. Let C C R" be a nonempty, convex, and closed set. If y € R" \ C, then there
exists a hyperplane H(p, @), p # 0, that separates 'y from C, that is,

(p,y) <a <{p,c) VceC.

Furthermore, there exists a hyperplane H(p,3), p # 0, that strictly separates y from C, that
is,
(p.y) <B<(p,c) VYceC.

Proof. Since C is closed, there exists ¢y € C such that O < |[y — ¢ol| < |y — ¢|| for every ¢ € C.
Define p := ¢p —y and @ := (p, cp) . Notice that p # 0 and

(p,y)=a—-lpl’ <a.
For any ¢ € C and 4 € (0, 1], the point ¢, := (1 — A)cy + Ac belongs to C. Then

Iy —col> < lly—cill?
= |ly—co+ Alco - o)
Iy = coll* + 22 llco = ¢l + 24{y — co, co — ¢,

which is equivalent to 2 {p, co — ¢) < A||co — cl?. By letting 2 — 0, we obtain

(p,y) <a <(p,c).
The second part of the theorem follows for any g in the interval ({p,y), @). O

Theorem A.6. Let C C R" be a nonempty and convex set. If y ¢ C, then there exists a
hyperplane H(p, ) that separates y from C, that is,

(p,yy <B<{p,cy VceC.

Proof. Notice first that the closure C of C is also convex. Further, there exists ¢, € C such
that ||y — coll < |ly — cl| for every c € C.

There are two cases for y, (i) y ¢ C and (ii) y lies in the boundary of C. Theorem
implies the desired result for case (i). Assume (ii) y is a boundary point of C, then there is
a sequence {yi} € R"\ C that converges to y. By Theorem |A.9, there exists a hyperplane
H(pr, Br), pr # 0, that separates C from yy, k € N. Notice that H (pk, Br), with

D B
Pk = 7> k-— 7T = 1°
Il Bl Il Pell

also separates C from yy, for each k € N. Then we can pick a subsequence { Pi,} of {px} such
that limy_,, px, = p, for some p with ||p|| = 1. Therefore H(p,5) separates y from C, where

B:=(p,y. O
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Theorem A.7 (Separating hyperplane theorem). Let A and B be nonempty convex sets in R”"
such that AN B = 0. Then there exists a hyperplane that separates A and B.

Proof. Let D =A-B :={x—-y|xeA, ye B}. Then D is a convex set and 0 ¢ D. By
Theorem[A.10] there is a hyperplane H(p, @) such that

(p,x—y)y<a<0 VYxeA, yeB.

Define 8 := sup{(p, x) | x € A}. Therefore the hyperplane H(p, ) separates A and B. O

A.3.1 Exercises

2.1
22
2.3

24
2.5

2.6

2.7

2.8

2.9

Let A € R" and B C R” be convex sets. Prove that A X B is convex in R"*".
Show any open ball B.(x) in R" is a convex set.

Let A C R” be a convex set and denote by int(A) the set of its interior points. Is int(A) a
convex set?

Show that the simplex {(4,,...,4,) € R} | Z?:l Aj = 1} is convex and compact.

Let f : R — R be a convex function. If f(0) = 0 and f is an even function (f(x) = f(—x)
for every x € R"), show that f(x) > O for every x € R".

Let f(x,y) = (x* +y™®)"1 for (x,y) € R2, and p # 0. Show that f is
(a) concaveif p > —1,
(b) convex if p < —1.

Let f : R — R be a concave function. Show that x; < x, < x3 implies

f(x2) = f(x1) S f(Gx3) = f(x) S f(x3) —f(xz)'

X2 — X1 X3 — X1 X3 — X2

X2—X]

Hint: Consider the convex combination xy = Axz + (1 — A)x1, where A = o

If xi,-- -, x; are positive real numbers, show that
X1+ ...+ X
§ X1 Xk S 17.
(Sydseter et al. [?]) Consider the Cobb—Douglas function

fx) = 2

defined on R", fora; >0 =1,2,...,n).
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(a) Show that the kth leading principal minor of the Hessian H f(x) is

a;—1 ay
-y (0%) a’z—l

_ K Q1 @k
H f(x) = [f(x)] (X1 - x)?

(073 073

(b) Show indeed that Hy f(x) = [~ fOI[1 - 35, o] 2

(x1xz)? "

(c) Prove that f is strictly concave if a; + ... + @, < 1.

04]
an

Clk—l
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