Optimization of functionals

D. González–Sánchez¹

Fall 2025

¹Conahcyt and Cinvestav-IPN, Mexico City, Mexico

Contents

1	Basi	cs of optimization in \mathbb{R}^n	
	1.1	Necessary conditions	
	1.2	Minimization of convex functions	
	1.3	Lagrange multipliers	
	1.4	Inequality constraints	
	Exer	cises	
A	Convexity in \mathbb{R}^n		
	A. 1	Continuity of convex functions	
	A.2	Subdifferentials of convex functions	
	A.3	Convex functions of class C^2	
	A.4	Separation theorems	
		A.4.1 Exercises	

Chapter 1

Basics of optimization in \mathbb{R}^n

1.1 Necessary conditions

Definition 1.1. Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}$. The point $\hat{x} \in X$ is a **local minimizer** of f if there is a ball $B_{\delta} = \{x \in \mathbb{R}^n \mid |x - \hat{x}| < \delta\}$ around \hat{x} such that

$$f(\hat{x}) \le f(x) \quad \forall x \in B_{\delta} \cap X.$$

The proof of the following proposition follows from the latter definition.

Proposition 1.2. Let X be an open subset of \mathbb{R}^n and $f: X \to \mathbb{R}$. If $\hat{x} \in X$ is a local minimizer of f and there exists the directional derivative

$$D_{v}^{+}f(\hat{x}) := \lim_{t \downarrow 0} \frac{f(\hat{x} + tv) - f(\hat{x})}{t},$$

for some $v \in \mathbb{R}^n$, $v \neq 0$, then

$$D_{v}^{+}f(\hat{x}) \geq 0.$$

If, in addition, there exists the two-sided directional derivative

$$D_{\nu}f(\hat{x}) := \lim_{t \to 0} \frac{f(\hat{x} + t\nu) - f(\hat{x})}{t},$$

then $D_{\nu}f(\hat{x})=0$.

Corollary 1.3. Let X be an open subset of \mathbb{R}^n . If $\hat{x} \in X$ is a local minimizer of the differentiable function $f: X \to \mathbb{R}$, then

$$\nabla f(\hat{x}) = 0.$$

1.2 Minimization of convex functions

The subset X of \mathbb{R}^n is **convex** if for each $x, y \in X$ and $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)y \in X$$
.

Definition 1.4. A function $f: J \to \mathbb{R}$ is called

(a) **convex** if for every $x, y \in J$ and $\lambda \in [0, 1]$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y); \tag{1.1}$$

(b) **strictly convex** if the inequality is strict for $x \neq y$ and $\lambda \in (0, 1)$.

Proposition 1.5. Let M be a convex subset of \mathbb{R}^n . If $f: M \to \mathbb{R}$ is a convex function, then any local minimizer is a global minimizer.

Proof. Let \hat{x} be a local minimizer of f, thus

$$f(\hat{x}) \le f(y), \quad \forall y \in M \cap U,$$

where U is some open subset of X. If $x \in M$, then there is $y \in M \cap U$ and $0 < \lambda < 1$ such that

$$y = \lambda \hat{x} + (1 - \lambda)x.$$

Then

$$f(\hat{x}) \le f(y)$$

$$\le \lambda f(\hat{x}) + (1 - \lambda)f(x),$$

that is, $(1 - \lambda) f(\hat{x}) \le (1 - \lambda) f(x)$. Therefore $f(\hat{x}) \le f(x)$ for each $x \in M$.

Lemma 1.6. Let $f: S \to \mathbb{R}$ be a C^1 function, where S is an open and convex subset of \mathbb{R}^n . The function f is convex in S if and only if

$$f(x) - f(a) \ge \langle Df(a), x - a \rangle \quad \forall x, a \in S.$$
 (1.2)

Likewise, f is strictly convex if and if the inequality is strict for every $x \neq a$.

Proof. Suppose that f is convex in S. Then for every $x, a \in S$ and $\lambda \in (0, 1]$

$$f(x) - f(a) \ge \frac{f(a + \lambda(x - a)) - f(a)}{\lambda}.$$

Letting $\lambda \to 0^+$, we obtain (1.2).

Conversely, let $x, a \in S$ and $\lambda \in [0, 1]$. Define $x_{\lambda} := \lambda x + (1 - \lambda)a$, then (1.2) yields

$$f(x) - f(x_{\lambda}) \ge \langle Df(x_{\lambda}), x - x_{\lambda} \rangle,$$

 $f(a) - f(x_{\lambda}) \ge \langle Df(x_{\lambda}), a - x_{\lambda} \rangle.$

Therefore

$$\lambda[f(x) - f(x_{\lambda})] + (1 - \lambda)[f(a) - f(x_{\lambda})] \ge \langle Df(x_{\lambda}), \lambda(x - x_{\lambda}) + (1 - \lambda)(a - x_{\lambda}) \rangle.$$

Since $\lambda(x-x_{\lambda}) + (1-\lambda)(a-x_{\lambda}) = 0$, it follows that

$$\lambda f(x) + (1 - \lambda)f(a) \ge f(\lambda x + (1 - \lambda)a).$$

We now show the second equivalence. Suppose first that f is strictly convex and pick $x, a \in S$ with $x \ne a$. By $(\ref{eq:second})$, with $\lambda' = 1$,

$$\frac{f(a+\lambda(x-a))-f(a)}{\lambda} < f(x)-f(a), \qquad 0 < \lambda < 1,$$

then

$$f(x) - f(a) > \inf_{0 < \lambda < 1} \frac{f(a + \lambda(x - a)) - f(a)}{\lambda}$$
$$= Df(a) \cdot (x - a).$$

For the converse, assume (??) holds for any pair of different points. Pick $x, a \in S$, with $x \neq a$. Then, for each $\lambda \in (0, 1)$,

$$f(x) - f(x_{\lambda}) > Df(x_{\lambda}) \cdot (x - x_{\lambda}),$$

 $f(a) - f(x_{\lambda}) > Df(x_{\lambda}) \cdot (a - x_{\lambda}),$

since $x_{\lambda} \neq a$. Hence, as above,

$$\lambda f(x) + (1 - \lambda)f(a) > f(\lambda x + (1 - \lambda)a), \quad \lambda \in (0, 1).$$

This completes the proof.

Theorem 1.7 (First–order necessary and sufficient condition). Let X, U be sets in \mathbb{R}^n such that $X \subseteq U$, X is convex, and U is open. Let $f: U \to \mathbb{R}$ be differentiable on U and convex on X. Then x^* is a global minimizer of f in X if and only if

$$Df(x^*) \cdot (x - x^*) \ge 0 \quad \forall x \in X. \tag{1.3}$$

Proof. Suppose first that x^* is a minimizer of f and pick any $x \in X$. Since f is differentiable, there exists $D_v^+ f(x^*) = Df(x^*) \cdot v$, with $v = x - x^*$; by Proposition 1.2 $Df(x^*) \cdot (x - x^*) \ge 0$. Conversely, if (1.3) holds, then by Proposition 1.6,

$$f(x) \ge f(x^*) + Df(x^*) \cdot (x - x^*) \ge f(x^*) \quad \forall x \in X.$$

Therefore x^* is a global minimizer of f in X.

1.3 Lagrange multipliers

Theorem 1.8 (Lagrange). Let $f: U \to \mathbb{R}$ and $g: U \to \mathbb{R}^m$ be of class C^1 , where U is an open subset of \mathbb{R}^n and m < n. If \hat{z} is a local minimizer to problem

$$\min_{z \in U} \{ f(z) \mid g(z) = 0 \}$$
 (1.4)

and rank $(Dg(\hat{z})) = m$, then there is a unique $\hat{\lambda} \in \mathbb{R}^m$ such that

$$Df(\hat{z}) = \hat{\lambda}^{\mathsf{T}} Dg(\hat{z}). \tag{1.5}$$

Proof. Let us rewrite the optimization problem as

$$\min_{(x,y)\in U} \{ f(x,y) \mid g(x,y) = 0 \}$$

where $x \in \mathbb{R}^{n-m}$ and $y \in \mathbb{R}^m$. Since $\operatorname{rank}(Dg(\hat{x},\hat{y})) = m$, where $(\hat{x},\hat{y}) = \hat{z}$ is the given local minimizer, we can assume that the m rows of $D_yg(\hat{x},\hat{y})$ are l.i.—otherwise the variables can be reordered. Then by the Implicit Function Theorem, there exists a local implicit C^1 function h such that g(x,h(x)) = 0, with $h(\hat{x}) = \hat{y}$, and

$$Dh(\hat{x}) = -[D_{y}g(\hat{x},\hat{y})]^{-1} \cdot D_{x}g(\hat{x},\hat{y}).$$

On the other hand, \hat{x} is a local minimizer of the function F(x) := f(x, h(x)) and so $DF(\hat{x}) = 0$. By the Chain Rule, $D_x f(\hat{x}, h(\hat{x})) + D_y f(\hat{x}, h(\hat{x})) \cdot Dh(\hat{x}) = 0$, that is,

$$D_{x}f(\hat{x},\hat{y}) = D_{y}f(\hat{x},\hat{y}) \cdot [D_{y}g(\hat{x},\hat{y})]^{-1} \cdot D_{x}g(\hat{x},\hat{y}).$$

The result follows by defining $\hat{\lambda}^{\top} := D_{\nu} f(\hat{x}, \hat{y}) \cdot [D_{\nu} g(\hat{x}, \hat{y})]^{-1}$.

Proposition 1.9. Let $f: U \to \mathbb{R}$ and $g: U \to \mathbb{R}^m$ be differentiable, where U is an open and convex subset of \mathbb{R}^n . Suppose that \hat{x} satisfies (1.5) for some $\hat{\lambda} \in \mathbb{R}^m$ and the function

$$x \mapsto f(x) + \hat{\lambda}^{\mathsf{T}} g(x), \qquad x \in U,$$

is convex, then \hat{x} is a global minimizer to problem (1.4).

Proof. It follows from Theorem 1.7.

1.4 Inequality constraints

Let A be a nonempty convex subset of X and let $f_j: X \to \mathbb{R}$ be convex for j = 0, 1, ..., n. Consider the **convex minimization problem**

$$\inf_{x \in A \cap F} f_0(x),\tag{1.6}$$

where

$$F := \{ x \in X \mid f_1(x) \le 0, \dots, f_n(x) \le 0 \}.$$

Remark 1.10. Let $f: X \to \mathbb{R} \cup \{\infty\}$ be a continuous convex function. Put

$$F = \{x \in X \mid f(x) \le 0\}$$

and

$$G = \{x \in X \mid f(x) < 0\}.$$

Then G is open, because f is continuous, and $G \subseteq F$, hence

$$G \subseteq int(F)$$
.

 \Diamond

In general, $int(F) \neq G$. Take, for instance, $f \equiv 0$. Nonetheless, if $G \neq \emptyset$, then

$$int(F) = G$$
.

Indeed, let $x \in \text{int}(F)$ and $x_0 \in G$. Then there exists $0 < \varepsilon < 1$ such that

$$y := x + \varepsilon(x - x_0) \in F$$
.

Observe that $f(y) \le 0$, $f(x_0) < 0$, and

$$x = (1 - \lambda)y + \lambda x_0$$

where $\lambda = \frac{\varepsilon}{1+\varepsilon} > 0$. Because f is convex, we have

$$f(x) \le (1 - \lambda)f(y) + \lambda f(x_0) < 0$$

which proves that $x \in G$. Therefore $int(F) \subseteq G$, whenever $G \neq \emptyset$.

Definition 1.11. The problem (1.6) is said to satisfy the **Slater's condition** if

$$\{x \in A \mid f_1(x) < 0, \dots, f_n(x) < 0\} \neq \emptyset.$$

In the following theorem, we use the **Lagrange function** $\mathcal{L}: X \times \mathbb{R}^{n+1} \to \mathbb{R}$ which is given by

$$\mathcal{L}(x, \lambda_0, \dots, \lambda_n) := \lambda_0 f_0(x) + \dots + \lambda_n f_n(x).$$

Theorem 1.12 (Kuhn–Tucker). *Suppose* $\overline{x} \in A \cap F$.

(a) If \bar{x} is a solution to the convex minimization problem (1.6), then there exist nonnegative scalars $\bar{\lambda}_0, \ldots, \bar{\lambda}_n$, not all zero, such that

$$\overline{\lambda}_j f_j(\overline{x}) = 0, \qquad 1 \le j \le n.$$
 (1.7)

and

$$\mathcal{L}(\overline{x}, \overline{\lambda}_0, \dots, \overline{\lambda}_n) = \min_{x \in A} \mathcal{L}(x, \overline{\lambda}_0, \dots, \overline{\lambda}_n)$$
 (1.8)

If, in addition, the Slater's condition holds, then $\overline{\lambda}_0 > 0$.

(b) Assume that (1.7) and (1.8) hold with $\overline{\lambda}_j \ge 0$, $1 \le j \le n$, and $\overline{\lambda}_0 = 1$. Then \overline{x} is a solution to problem (1.6).

Proof. (a) Let C be the set of elements $(y_0, y_1, \dots, y_n) \in \mathbb{R}^{n+1}$ that satisfy

$$f_0(x) - f_0(\overline{x}) < y_0, \ f_1(x) \le y_1, \dots, \ f_n(x) \le y_n,$$

for some $x \in A$. Then C is convex, because A and the functions f_0, \ldots, f_n are convex. Since $\overline{x} \in A \cap F$,

$$y_j > 0, \ 0 \le j \le n, \quad \Rightarrow \quad (y_0, \dots, y_n) \in C.$$
 (1.9)

In addition, $0 \notin C$. Indeed, if $0 \in C$, then there would exist $x' \in A$ such that $f_0(x') < f_0(\overline{x})$ and $x' \in F$. This is a contradiction because f attains its minimum at \overline{x} .

By the Separation theorem, there is a hyperplane that separates C and $\{0\}$, that is, for some $\overline{\lambda} = (\overline{\lambda}_0, \dots, \overline{\lambda}_n) \neq 0$

$$\langle \overline{\lambda} \mid y \rangle \ge 0 \quad \forall y \in C.$$

From (1.9), we conclude that $\overline{\lambda}_i \ge 0$ for each j.

We now show (1.7). Suppose $f_k(\overline{x}) < 0$ for some $1 \le k \le n$. Put $y_k = f_k(\overline{x})$,

$$y_j = 0$$
 $j \ge 1, j \ne k,$

and $y_0 = \varepsilon$, where $\varepsilon > 0$. Then $(y_0, y_1, \dots, y_n) \in C$, because $\overline{x} \in A \cap F$, and hence

$$\overline{\lambda}_0 \varepsilon + \overline{\lambda}_k f_k(\overline{x}) \ge 0.$$

By letting $\varepsilon \downarrow 0$, we have $\overline{\lambda}_k f_k(\overline{x}) \geq 0$ thus $\overline{\lambda}_k \leq 0$. Since we had concluded that $\overline{\lambda}_k \geq 0$, we indeed have

$$f_k(\overline{x}) < 0 \quad \Rightarrow \quad \overline{\lambda}_k = 0.$$

Therefore (1.7) holds.

For each $x \in A$, put $z_i = f_i(x)$ for $1 \le j \le n$, and

$$z_0 = f_0(x) - f_0(\overline{x}) + \varepsilon,$$

where $\varepsilon > 0$. Then $(z_0, z_1, \dots, z_n) \in C$ and

$$\overline{\lambda}_0(f_0(x) - f_0(\overline{x}) + \varepsilon) + \overline{\lambda}_1 f_1(x) + \ldots + \overline{\lambda}_n f_n(x) \ge 0$$

By letting $\varepsilon \downarrow 0$, we have

$$\mathcal{L}(x,\overline{\lambda}_0,\ldots,\overline{\lambda}_n) \geq \overline{\lambda}_0 f_0(\overline{x}).$$

Therefore (1.8) follows due to (1.7).

Suppose now the Slater's condition holds. Recall that $\overline{\lambda}_0, \dots, \overline{\lambda}_n$ are nonnegative and not all zero. If $\overline{\lambda}_0 = 0$, then $\mathcal{L}(\overline{x}, \overline{\lambda}_0, \dots, \overline{\lambda}_n) = 0$ and

$$\mathcal{L}(x,\overline{\lambda}_0,\ldots,\overline{\lambda}_n)<0$$

for some $x \in A$. This is a contradiction to (1.8), then $\overline{\lambda}_0 > 0$.

(b) Let $x \in A \cap F$. In particular, $x \in F$ and, because $\overline{\lambda}_j \ge 0$, $1 \le j \le n$,

$$\sum_{j=1}^{n} \overline{\lambda}_{j} f_{j}(x) \leq 0.$$

Finally, due to (1.7) and (1.8),

$$f_0(\overline{x}) = \mathcal{L}(\overline{x}, 1, \overline{\lambda}_1, \dots, \overline{\lambda}_n)$$

$$\leq \mathcal{L}(x, 1, \overline{\lambda}_1, \dots, \overline{\lambda}_n)$$

$$\leq f_0(x)$$

for each $x \in A \cap F$.

Exercises

- 1.1 Let $f, g: S \to \mathbb{R}$ be convex functions, where $S \subseteq \mathbb{R}^n$ is convex. Show the following:
 - (a) If c is a nonnegative real number, then f + cg is convex.
 - (b) If $F : \mathbb{R} \to \mathbb{R}$ is convex and increasing, then $F \circ f$ is convex.
 - (c) If $G : \mathbb{R} \to \mathbb{R}$ is concave and decreasing, then $G \circ g$ is concave.
- 1.2 Show that $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its **epigraph**

$$\{(x, y) \in \mathbb{R}^{n+1} \mid y \ge f(x)\}$$

is convex.

- 1.3 Prove that f(x) = |x| is convex in \mathbb{R}^n . Is f strictly convex? What about $g(x) = |x|^2$?
- 1.4 Show that the set of minimizers (which could be empty) of any convex function is convex. Prove also that strictly convex functions have at most one global minimizer.
- 1.5 Let $f_n : \mathbb{R} \to \mathbb{R}$ be a convex function for each $n \in \mathbb{N}$. Prove the following assertions.
 - (a) If (f_n) converges to f (pointwise), then f is convex.
 - (b) If $F(x) := \sup_{n>1} f_n(x)$ is finite for each $x \in J$, then F is convex.
- 1.6 (**Least squares**) Let $A \in \mathcal{M}_{m \times n}$, with m > n, and $b \in \mathbb{R}^m$. The system Ax = b usually does not have a solution $x \in \mathbb{R}^n$, then an alternative is to find the *least-squares solution* \hat{x} —if it exists—, that is,

$$|A\hat{x} - b|^2 = \min_{x \in \mathbb{R}^n} |Ax - b|^2.$$

Assume rank(A) = n and prove that there exists a unique global minimizer \hat{x} , given by

$$\hat{x} = (A^{T}A)^{-1}A^{T}b.$$

Hint: Since rank(A) = n, use the fact that $M^{T}M$ is invertible.

1.7 Let $a \in \mathbb{R}^n$, $a \neq 0$. Use the Lagrange multipliers method to find the unique solution to the problem

$$\min_{x \in \mathbb{R}^n} \{ a^{\top} x : |x|^2 = 1 \}.$$

Hint: Use also the Cauchy-Schwarz inequality.

- 1.8 (Spectral theorem) Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix.
 - (a) Use Lagrange multipliers to show that there exists $\lambda_1 \in \mathbb{R}$ and $u_1 \in \mathbb{R}^n$, $|u_1| = 1$, such that

$$Au_1 = \lambda_1 u_1$$

and

$$x \in \mathbb{R}^n, |x| = 1 \implies x^{\mathsf{T}} A x \ge \lambda_1.$$
 (1.10)

- (b) Show that λ_1 is the smallest eigenvalue of A.
- (c) Show that exists $\lambda_2 \in \mathbb{R}$ and $u_2 \in \mathbb{R}^n$, $|u_2| = 1$, such that

$$Au_2 = \lambda_2 u_2$$

and

$$u_2^{\mathsf{T}}u_1 = 0.$$

Hint: Consider $W_1 = \{x \in \mathbb{R}^n \mid x^\top u_1 = 0\}$, verify that $Ax \in W_1$ for every $x \in W_1$, and find a minimizer u_2 of $x^\top Ax$ in some compact subset of W_1 .

(d) Prove that there exist an orthonormal basis $\{u_1, \ldots, u_n\}$ of \mathbb{R}^n and a vector $(\lambda_1, \ldots, \lambda_n)^{\mathsf{T}}$ such that

$$Au_j = \lambda_j u_j, \quad 1 \le j \le n.$$

- 1.9 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix. Prove the following:
 - (a) $tr(A) := \sum_{j=1}^{n} A_{jj} = \sum_{j=1}^{n} \lambda_{j}$.

Hint: Recall Exercise 1.8(d) to show that $AU = U\Lambda$, where Λ is diagonal and the columns of U are eigenvectors.

- (b) A is positive semidefinite if and only if its eigenvalues are nonnegative.
- (c) A is positive definite if and only if its eigenvalues are positive.
- 1.10 Let $h: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Consider the problem

$$\inf\{h(x) \mid x \in \mathbb{R}^n\}.$$

In numerical analysis, a vector $v \in \mathbb{R}^n \setminus \{0\}$ is said to be a *descent direction* of f at a if $D_v h(a) < 0$. If $\nabla h(a) \neq 0$, then $-\nabla h(a)$ is called the *steepest-descent direction* of h at a. Justify these names by proving the following:

(a) If $D_{\nu}h(a) < 0$, then there exists $t_0 > 0$ such that

$$h(a + tv) < h(a)$$
 $\forall t \in (0, t_0].$

(b) There exists a solution to

$$\min_{v \in \mathbb{R}^n} \{ D_v h(a) : |v|^2 = 1 \},$$

and such a solution is given by $-\nabla h(a)/|\nabla h(a)|$.

Appendix A

Convexity in \mathbb{R}^n

A.1 Continuity of convex functions

Theorem A.1. Let $f: S \to \mathbb{R}$ be a convex function. If x_0 is an interior point of S, then f is continuous at x_0 .

Proof. Let $\{e_k \mid k = 1, ..., n\}$ be the canonical basis of \mathbb{R}^n . Since x_0 is an interior point of S, there exists $\varepsilon > 0$ such that $\overline{B}_1(x_0, \varepsilon) \subseteq S$. Define, for k = 1, ..., 2n,

$$d_k = \begin{cases} \varepsilon e_{\frac{k+1}{2}} & \text{if } k \text{ is odd,} \\ -\varepsilon e_{\frac{k}{2}} & \text{if } k \text{ is even,} \end{cases}$$

and $M := \max\{f(x_0 + d_k) \mid k = 1, ..., 2n\}$. Then

$$f(x) \le M \quad \forall x \in \overline{B}_1(x_0, \varepsilon).$$
 (A.1)

On the other hand, let $\{x_k\} \subseteq S$ be any sequence converging to x_0 . Then there exists K such that $x_k \in B_1(x_0, \varepsilon)$ for every $k \ge K$. Furthermore,

$$x_k = \lambda_k x_0 + (1 - \lambda_k) y_k, \qquad k \ge K$$

for some $\lambda_k \in [0, 1]$ and y_k such that $||y_k - x_0||_1 = \varepsilon$. Notice that

$$\lim_{k \to \infty} \| (1 - \lambda_k)(y_k - x_0) \| = 0,$$

that is, $\lim_{k\to\infty} (1 - \lambda_k) = 1$. Since f is convex,

$$f(x_k) \le \lambda_k f(x_0) + (1 - \lambda_k) f(y_k), \quad k \ge K,$$

thus, by (A.1), $\overline{\lim}_{k\to\infty} f(x_k) \le f(x_0)$.

On the other hand, the inequality $\varliminf_{k\to\infty} f(x_k) \ge f(x_0)$ can be obtained by considering convex combinations of the form $x_0 = \theta_k x_k + (1-\theta_k)z_k$ with $||z_k - x_0|| = \varepsilon$. Therefore $\varlimsup_{k\to\infty} f(x_k) \le f(x_0) \le \varliminf_{k\to\infty} f(x_k)$ implies the continuity of f at x_0 .

Corollary A.2. Let $f: S \to \mathbb{R}$ be a convex function. If S is open, then f is continuous on S.

A.2 Convex functions of class C^2

Theorem A.3. Let $f: S \to \mathbb{R}$ be a C^2 function, where $S \subseteq \mathbb{R}^n$ is open and convex.

- (a) f is convex in S if and only if $D^2 f(x)$ is positive semidefinite for every $x \in S$.
- (b) If $D^2 f(x)$ is positive definite for every $x \in S$, then f is strictly convex.

Proof. Let $x \in S$ and $h \in \mathbb{R}^n$.

(a) Suppose that f is convex on S and fix $x \in S$. Let $h \in \mathbb{R}^n$, $h \neq 0$. Then we can choose $N \in \mathbb{N}$ such that

$$x + n^{-1}h \in S$$
 $\forall n \ge N$.

Since S is convex, by Taylor theorem, there exists $\theta_n \in (0, 1)$ such that

$$f(x+n^{-1}h) = f(x) + n^{-1}Df(x)h + \frac{1}{2}n^{-2}h^{\top}D^{2}f(x+\theta_{n}n^{-1}h)h, \qquad \forall n \ge N.$$

Theorem 1.6 implies

$$h^{\mathsf{T}}D^2 f(x + \theta_n n^{-1}h)h \ge 0, \qquad \forall n \ge N.$$
 (A.2)

Notice that, when $n \to \infty$, $|\theta_n n^{-1} h| \to 0$ and hence

$$\lim_{n \to \infty} D^2 f(x + \theta_n n^{-1} h) = D^2 f(x)$$

because f is of class C^2 . Then, by letting $n \to \infty$ in (A.3), it follows that

$$h^{\mathsf{T}}D^2f(x)h \ge 0.$$

This proves that $D^2 f(x)$ is positive semidefinite at x.

Conversely, by Taylor theorem, with h = x - a,

$$f(x) = f(a) + Df(a) \cdot (x - a) + \frac{1}{2}(x - a)^{\mathsf{T}} D^2 f(a + \theta(x - a)) \cdot (x - a) \tag{A.3}$$

for some $\theta \in (0, 1)$. Since $D^2 f(\cdot)$ is positive definite, then $f(x) - f(a) \ge D f(a) \cdot (x - a)$ for each $x, a \in S$. Therefore f is convex by Theorem 1.6.

(b) It follows from (A.4) and Theorem 1.6.

A.3 Separation theorems

Definition A.4. Let $p \in \mathbb{R}^n \setminus \{0\}$ and $\beta \in \mathbb{R}$. The **hyperplane** determined by p and β is the set

$$H(p,\beta) := \{x \in \mathbb{R}^n \mid \langle p, x \rangle = \beta\}.$$

Theorem A.5. Let $C \subseteq \mathbb{R}^n$ be a nonempty, convex, and closed set. If $y \in \mathbb{R}^n \setminus C$, then there exists a hyperplane $H(p, \alpha)$, $p \neq 0$, that separates y from C, that is,

$$\langle p, y \rangle < \alpha \le \langle p, c \rangle \quad \forall c \in C.$$

Furthermore, there exists a hyperplane $H(p,\beta)$, $p \neq 0$, that strictly separates y from C, that is,

$$\langle p, y \rangle < \beta < \langle p, c \rangle \quad \forall c \in C.$$

Proof. Since C is closed, there exists $c_0 \in C$ such that $0 < ||y - c_0|| \le ||y - c||$ for every $c \in C$. Define $p := c_0 - y$ and $\alpha := \langle p, c_0 \rangle$. Notice that $p \ne 0$ and

$$\langle p, y \rangle = \alpha - ||p||^2 < \alpha.$$

For any $c \in C$ and $\lambda \in (0, 1]$, the point $c_{\lambda} := (1 - \lambda)c_0 + \lambda c$ belongs to C. Then

$$||y - c_0||^2 \le ||y - c_\lambda||^2$$

$$= ||y - c_0 + \lambda(c_0 - c)||^2$$

$$= ||y - c_0||^2 + \lambda^2 ||c_0 - c||^2 + 2\lambda \langle y - c_0, c_0 - c \rangle,$$

which is equivalent to $2\langle p, c_0 - c \rangle \le \lambda ||c_0 - c||^2$. By letting $\lambda \to 0$, we obtain

$$\langle p, y \rangle < \alpha \le \langle p, c \rangle$$
.

The second part of the theorem follows for any β in the interval $(\langle p, y \rangle, \alpha)$.

Theorem A.6. Let $C \subseteq \mathbb{R}^n$ be a nonempty and convex set. If $y \notin C$, then there exists a hyperplane $H(p,\beta)$ that separates y from C, that is,

$$\langle p, y \rangle \le \beta \le \langle p, c \rangle \quad \forall c \in C.$$

Proof. Notice first that the closure \overline{C} of C is also convex. Further, there exists $c_0 \in \overline{C}$ such that $||y - c_0|| \le ||y - c||$ for every $c \in C$.

There are two cases for y, (i) $y \notin \overline{C}$ and (ii) y lies in the boundary of \overline{C} . Theorem A.9 implies the desired result for case (i). Assume (ii) y is a boundary point of \overline{C} , then there is a sequence $\{y_k\} \subseteq \mathbb{R}^n \setminus \overline{C}$ that converges to y. By Theorem A.9, there exists a hyperplane $H(\tilde{p}_k, \tilde{\beta}_k)$, $\tilde{p}_k \neq 0$, that separates \overline{C} from $y_k, k \in \mathbb{N}$. Notice that $H(p_k, \beta_k)$, with

$$p_k := \frac{\tilde{p}_k}{\|\tilde{p}_k\|}, \qquad \beta_k := \frac{\tilde{\beta}_k}{\|\tilde{p}_k\|},$$

also separates \overline{C} from y_k , for each $k \in \mathbb{N}$. Then we can pick a subsequence $\{p_{k_l}\}$ of $\{p_k\}$ such that $\lim_{k\to\infty} p_{k_l} = p$, for some p with ||p|| = 1. Therefore $H(p,\beta)$ separates p from p0, where p0 := p1.

Theorem A.7 (Separating hyperplane theorem). Let A and B be nonempty convex sets in \mathbb{R}^n such that $A \cap B = \emptyset$. Then there exists a hyperplane that separates A and B.

Proof. Let $D = A - B := \{x - y \mid x \in A, y \in B\}$. Then D is a convex set and $0 \notin D$. By Theorem A.10, there is a hyperplane $H(p, \alpha)$ such that

$$\langle p, x - y \rangle \le \alpha \le 0 \quad \forall x \in A, y \in B.$$

Define $\beta := \sup\{\langle p, x \rangle \mid x \in A\}$. Therefore the hyperplane $H(p, \beta)$ separates A and B.

A.3.1 Exercises

- 2.1 Let $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ be convex sets. Prove that $A \times B$ is convex in \mathbb{R}^{n+m} .
- 2.2 Show any open ball $B_{\varepsilon}(x)$ in \mathbb{R}^n is a convex set.
- 2.3 Let $A \subseteq \mathbb{R}^n$ be a convex set and denote by int(A) the set of its interior points. Is int(A) a convex set?
- 2.4 Show that the *simplex* $\{(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+ \mid \sum_{j=1}^n \lambda_j = 1\}$ is convex and compact.
- 2.5 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. If f(0) = 0 and f is an even function (f(x) = f(-x)) for every $x \in \mathbb{R}^n$, show that $f(x) \ge 0$ for every $x \in \mathbb{R}^n$.
- 2.6 Let $f(x, y) = (x^{-\rho} + y^{-\rho})^{-1/\rho}$ for $(x, y) \in \mathbb{R}^2_{++}$ and $\rho \neq 0$. Show that f is
 - (a) concave if $\rho \ge -1$,
 - (b) convex if $\rho \leq -1$.
- 2.7 Let $f : \mathbb{R} \to \mathbb{R}$ be a concave function. Show that $x_1 < x_2 < x_3$ implies

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge \frac{f(x_3) - f(x_1)}{x_3 - x_1} \ge \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

Hint: Consider the convex combination $x_2 = \lambda x_3 + (1 - \lambda)x_1$, where $\lambda = \frac{x_2 - x_1}{x_2 - x_1}$.

2.8 If x_1, \dots, x_k are positive real numbers, show that

$$\sqrt[k]{x_1\cdots x_k} \leq \frac{x_1+\ldots+x_k}{k}.$$

2.9 (Sydsæter et al. [?]) Consider the Cobb-Douglas function

$$f(x) = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

defined on \mathbb{R}_{++}^n for $\alpha_i > 0$ (i = 1, 2, ..., n).

(a) Show that the kth leading principal minor of the Hessian Hf(x) is

$$H_k f(x) = [f(x)]^k \frac{\alpha_1 \cdots \alpha_k}{(x_1 \cdots x_k)^2} \begin{vmatrix} \alpha_1 - 1 & \alpha_1 & \cdots & \alpha_1 \\ \alpha_2 & \alpha_2 - 1 & \cdots & \alpha_2 \\ & & \ddots & \\ \alpha_k & \alpha_k & \cdots & \alpha_k - 1 \end{vmatrix}.$$

- (b) Show indeed that $H_k f(x) = [-f(x)]^k [1 \sum_{i=1}^k \alpha_i] \frac{\alpha_1 \cdots \alpha_k}{(x_1 \cdots x_k)^2}$.
- (c) Prove that f is strictly concave if $\alpha_1 + \ldots + \alpha_n < 1$.