Optimization of functionals

Department of mathematics, Cinvestav-IPN

Problem set 1. Calculus of variations Solutions

1. Suppose the Lagrangian L(t, x, x') and x(t) are of class C^2 . Show that the EL equation can be written as

$$x''D_{33}^2L + x'D_{32}^2L + D_{31}^2L - D_2L = 0.$$

Solution. It follows from the Chain rule, since

$$\frac{d}{dt}D_3L = x''D_{33}^2L + x'D_{32}^2L + D_{31}^2L.$$

2. Consider a Lagrangian L(x, x') which does not depend explicitly on t. If L is of class C^1 and there exists x'', show that the EL equation becomes

$$L - x' \frac{\partial L}{\partial x'} = C,$$

where C is a constant.

Solution. Notice that $\frac{d}{dt}[L - x'\frac{\partial L}{\partial x'}] = x'[\frac{\partial L}{\partial x} - \frac{d}{dt}\frac{\partial L}{\partial x'}]$, hence the conclusion follows from the EL equation.

Remark. By assuming that x are of class C^1 , the differentiability of x' (that is, the existence of x'') can be proved (see p. 25 in O. Bolza, *Lectures on the calculus of variations*, Chelsea, New York, 1961).

3. Find the function $\hat{x}: [0,T] \to \mathbb{R}$ of class C^1 that minimizes the functional

$$\int_0^T [x^2(t) + cx'(t)^2] dt, \qquad x(0) = x_0, \ x(T) = 0.$$

where c is a positive constant.

Solution. The EL equation takes the form x'' - x/c = 0 whose general solution is

$$\hat{x}(t) = k_1 e^{rt} + k_2 e^{-rt},$$

where $r^2c = 1$. By using the conditions $x(0) = x_0$ and x(T) = 0, we find

$$k_1 = \frac{-x_0 e^{-rT}}{e^{rT} - e^{-rT}}$$

and $k_2 = x_0 - k_1$. Since the Lagrangian is convex, \hat{x} is indeed a minimizer.

4. Consider the functional

$$T(f) := \int_0^{b_1} \sqrt{\frac{1 + [f'(x)]^2}{-2gf(x)}} dx, \qquad f(0) = 0, \ f(b_1) = b_2.$$

Show that the associated EL equation¹ becomes

$$f(x)\left(1+[f'(x)]^2\right)=c, \qquad f(0)=0, \ f(b_1)=b_2.$$
 (1)

Solution. From Exercise 2, the EL equation takes the form

$$L(f, f') - f' \frac{1}{2L(f, f')} \cdot \frac{f'}{-gf} = C,$$

where $L(f, f') = \sqrt{\frac{1+(f')^2}{-2gf}}$. That is,

$$\sqrt{\frac{1+(f')^2}{-f} - \frac{(f')^2}{\sqrt{1+(f')^2}\sqrt{-f}}} = C\sqrt{2g}.$$

Use the algebraic equality

$$\sqrt{1+d^2} - \frac{d^2}{\sqrt{1+d^2}} = \frac{1}{\sqrt{1+d^2}}$$

and let $c = -1/(2gC^2)$.

5. Prove that the following parametric curve is a solution to (1)

$$x(\alpha) = R(\alpha - \sin \alpha) \tag{2}$$

$$y(\alpha) = -R(1 - \cos \alpha), \qquad 0 \le \alpha \le \alpha_1$$
 (3)

where $R = -b_2/(1 - \cos \alpha_1)$ and α_1 is a solution, in the interval $(0, 2\pi)$, to

$$\frac{\alpha - \sin \alpha}{1 - \cos \alpha} = -\frac{b_1}{b_2}.$$

¹Ignore the assumptions required to obtain the EL equation

Solution. Notice that (2) can be written as $R(\alpha - \sin \alpha) - x = 0$. By using the implicit function theorem, α can be written as $\alpha(x)$ in the interval $(0, 2\pi)$, and

$$R[\alpha'(x) - \cos(\alpha(x)) \cdot \alpha'(x)] - 1 = 0.$$

That is, $\alpha'(x) = \frac{1}{R[1-\cos(\alpha(x))]}$. By the Chain rule

$$y'(x) = y'(\alpha(x)) \cdot \alpha'(x) = \frac{-\operatorname{sen}(\alpha(x))}{1 - \cos(\alpha(x))}.$$

We can verify that $y[1 + (y')^2] = -2R$ as required. Further, the conditions $x(\alpha_1) = b_1$ and $y(\alpha_1) = b_2$ yield

$$\frac{\alpha_1 - \sin \alpha_1}{1 - \cos \alpha_1} = -\frac{b_1}{b_2} \tag{4}$$

and $R = -b_2/(1 - \cos \alpha_1)$. The solution α_1 to equation (4) exists because the function

$$g(\alpha) := \frac{\alpha - \sin \alpha}{1 - \cos \alpha}, \qquad 0 < \alpha < 2\pi,$$

is continuous, positive, $\lim_{\alpha\to 2\pi^-} g(\alpha) = \infty$, and $\lim_{\alpha\to 0^+} g(\alpha) = 0$. The latter limit can be verified by using L'Hôpital's rule (twice).