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Problem set 1. Calculus of variations
Solutions

1. Suppose the Lagrangian L(t, x, x′) and x(t) are of class C2. Show that the EL
equation can be written as

x′′D2
33L+ x′D2

32L+D2
31L−D2L = 0.

Solution. It follows from the Chain rule, since

d

dt
D3L = x′′D2

33L+ x′D2
32L+D2

31L.

2. Consider a Lagrangian L(x, x′) which does not depend explicitly on t. If L is of
class C1 and there exists x′′, show that the EL equation becomes

L− x′ ∂L
∂x′

= C,

where C is a constant.

Solution. Notice that d
dt

[L − x′ ∂L
∂x′

] = x′[∂L
∂x
− d

dt
∂L
∂x′

], hence the conclusion
follows from the EL equation.
Remark. By assuming that x are of class C1, the differentiability of x′ (that is,
the existence of x′′) can be proved (see p. 25 in O. Bolza, Lectures on the calculus
of variations, Chelsea, New York, 1961).

3. Find the function x̂ : [0, T ]→ R of class C1 that minimizes the functional∫ T

0

[x2(t) + cx′(t)2]dt, x(0) = x0, x(T ) = 0,

where c is a positive constant.

Solution. The EL equation takes the form x′′ − x/c = 0 whose general
solution is

x̂(t) = k1e
rt + k2e

−rt,

where r2c = 1. By using the conditions x(0) = x0 and x(T ) = 0, we find

k1 =
−x0e−rT

erT − e−rT

and k2 = x0− k1. Since the Lagrangian is convex, x̂ is indeed a minimizer.

4. Consider the functional

T (f) :=

∫ b1

0

√
1 + [f ′(x)]2

−2gf(x)
dx, f(0) = 0, f(b1) = b2.
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Show that the associated EL equation1 becomes

f(x)
(
1 + [f ′(x)]2

)
= c, f(0) = 0, f(b1) = b2. (1)

Solution. From Exercise 2, the EL equation takes the form

L(f, f ′)− f ′ 1

2L(f, f ′)
· f ′

−gf
= C,

where L(f, f ′) =
√

1+(f ′)2

−2gf . That is,√
1 + (f ′)2

−f
− (f ′)2√

1 + (f ′)2
√
−f

= C
√

2g.

Use the algebraic equality

√
1 + d2 − d2√

1 + d2
=

1√
1 + d2

and let c = −1/(2gC2).

5. Prove that the following parametric curve is a solution to (1)

x(α) = R(α− sinα) (2)

y(α) = −R(1− cosα), 0 ≤ α ≤ α1 (3)

where R = −b2/(1− cosα1) and α1 is a solution, in the interval (0, 2π), to

α− sinα

1− cosα
= −b1

b2
.

1Ignore the assumptions required to obtain the EL equation
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Solution.Notice that (2) can be written asR(α−sinα)−x = 0. By using the
implicit function theorem, α can be written as α(x) in the interval (0, 2π),
and

R[α′(x)− cos(α(x)) · α′(x)]− 1 = 0.

That is, α′(x) = 1
R[1−cos(α(x))] . By the Chain rule

y′(x) = y′(α(x)) · α′(x) =
− sen(α(x))

1− cos(α(x))
.

We can verify that y[1 + (y′)2] = −2R as required. Further, the conditions
x(α1) = b1 and y(α1) = b2 yield

α1 − sinα1

1− cosα1

= −b1
b2

(4)

and R = −b2/(1 − cosα1). The solution α1 to equation (4) exists because
the function

g(α) :=
α− sinα

1− cosα
, 0 < α < 2π,

is continuous, positive, ĺımα→2π− g(α) = ∞, and ĺımα→0+ g(α) = 0. The
latter limit can be verified by using L’Hôpital’s rule (twice).
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