Optimization of functionals

Department of mathematics, Cinvestav-IPN

Problem set 1. Calculus of variations Solutions

1. Suppose the Lagrangian $L(t, x, x')$ and $x(t)$ are of class $C²$. Show that the EL equation can be written as

$$
x''D_{33}^2L + x'D_{32}^2L + D_{31}^2L - D_2L = 0.
$$

Solution. It follows from the Chain rule, since

$$
\frac{d}{dt}D_3L = x''D_{33}^2L + x'D_{32}^2L + D_{31}^2L.
$$

2. Consider a Lagrangian $L(x, x')$ which does not depend explicitly on t. If L is of class C^1 and there exists x'' , show that the EL equation becomes

$$
L - x' \frac{\partial L}{\partial x'} = C,
$$

where C is a constant.

Solution. Notice that $\frac{d}{dt}[L - x'\frac{\partial L}{\partial x'}]$ $\frac{\partial L}{\partial x'}$] = x' [$\frac{\partial L}{\partial x}$ – $\frac{d}{dx}$ dt ∂L $\frac{\partial L}{\partial x'}$, hence the conclusion follows from the EL equation.

Remark. By assuming that x are of class C^1 , the differentiability of x' (that is, the existence of x'') can be proved (see p. 25 in O. Bolza, Lectures on the calculus of variations, Chelsea, New York, 1961).

3. Find the function $\hat{x} : [0, T] \to \mathbb{R}$ of class C^1 that minimizes the functional

$$
\int_0^T [x^2(t) + cx'(t)^2]dt, \qquad x(0) = x_0, \ x(T) = 0,
$$

where c is a positive constant.

Solution. The EL equation takes the form $x'' - x/c = 0$ whose general solution is

$$
\hat{x}(t) = k_1 e^{rt} + k_2 e^{-rt},
$$

where $r^2c = 1$. By using the conditions $x(0) = x_0$ and $x(T) = 0$, we find

$$
k_1 = \frac{-x_0 e^{-rT}}{e^{rT} - e^{-rT}}
$$

and $k_2 = x_0 - k_1$. Since the Lagrangian is convex, \hat{x} is indeed a minimizer.

4. Consider the functional

$$
T(f) := \int_0^{b_1} \sqrt{\frac{1 + [f'(x)]^2}{-2gf(x)}} dx, \qquad f(0) = 0, \ f(b_1) = b_2.
$$

Show that the associated EL equation¹ becomes

$$
f(x)\left(1+[f'(x)]^2\right)=c, \qquad f(0)=0, \ f(b_1)=b_2. \tag{1}
$$

Solution. From Exercise 2, the EL equation takes the form

$$
L(f, f') - f' \frac{1}{2L(f, f')} \cdot \frac{f'}{-gf} = C,
$$

where $L(f, f') = \sqrt{\frac{1+(f')^2}{-2gf}}$. That is,

$$
\sqrt{\frac{1+(f')^2}{-f}} - \frac{(f')^2}{\sqrt{1+(f')^2}\sqrt{-f}} = C\sqrt{2g}.
$$

Use the algebraic equality

$$
\sqrt{1+d^2} - \frac{d^2}{\sqrt{1+d^2}} = \frac{1}{\sqrt{1+d^2}}
$$

and let $c = -1/(2gC^2)$.

5. Prove that the following parametric curve is a solution to (1)

$$
x(\alpha) = R(\alpha - \sin \alpha) \tag{2}
$$

$$
y(\alpha) = -R(1 - \cos \alpha), \qquad 0 \le \alpha \le \alpha_1 \tag{3}
$$

where $R = -b_2/(1 - \cos \alpha_1)$ and α_1 is a solution, in the interval $(0, 2\pi)$, to

$$
\frac{\alpha - \sin \alpha}{1 - \cos \alpha} = -\frac{b_1}{b_2}.
$$

¹ Ignore the assumptions required to obtain the EL equation

Solution. Notice that (2) can be written as $R(\alpha - \sin \alpha) - x = 0$. By using the implicit function theorem, α can be written as $\alpha(x)$ in the interval $(0, 2\pi)$, and

$$
R[\alpha'(x) - \cos(\alpha(x)) \cdot \alpha'(x)] - 1 = 0.
$$

That is, $\alpha'(x) = \frac{1}{R[1-\cos(\alpha(x))]}.$ By the Chain rule

$$
y'(x) = y'(\alpha(x)) \cdot \alpha'(x) = \frac{-\operatorname{sen}(\alpha(x))}{1 - \cos(\alpha(x))}.
$$

We can verify that $y[1+(y')^2]=-2R$ as required. Further, the conditions $x(\alpha_1) = b_1$ and $y(\alpha_1) = b_2$ yield

$$
\frac{\alpha_1 - \sin \alpha_1}{1 - \cos \alpha_1} = -\frac{b_1}{b_2} \tag{4}
$$

and $R = -b_2/(1 - \cos \alpha_1)$. The solution α_1 to equation (4) exists because the function

$$
g(\alpha) := \frac{\alpha - \sin \alpha}{1 - \cos \alpha}, \qquad 0 < \alpha < 2\pi,
$$

is continuous, positive, $\lim_{\alpha \to 2\pi^-} g(\alpha) = \infty$, and $\lim_{\alpha \to 0^+} g(\alpha) = 0$. The latter limit can be verified by using L'Hôpital's rule (twice).