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Problem set 1

1. Let f, g : S → R be convex functions, where S ⊆ Rn is convex. Show the
following:

(a) If c is a nonnegative real number, then f + cg is convex.

(b) Let J ⊆ R be an interval such that f(x) ∈ J for every x ∈ S. If F : J → R
is convex and increasing, then F ◦ f is convex.

2. Show that f : Rn → R is convex if and only if its epigraph

{(x, y) ∈ Rn+1 | y ≥ f(x)}

is a convex set.

3. Show that f(x) = |x| is convex on Rn. Is f strictly convex? What about g(x) =
|x|2?

4. Show that the set of global minimizers (which could be empty) of any convex
function is convex. Prove also that strictly convex functions have at most one
global minimizer.

5. Let fn : Rn → R be a convex function for each n ∈ N. Show the following
assertions.

(a) If (fn) converges (pointwise) to f , then f is convex.

(b) If F (x) := supn≥1fn(x) is finite for each x ∈ J , then F is convex.

6. (Least squares) Let A ∈ Mm×n, with m > n, and b ∈ Rm. The system Ax = b
usually does not have a solution x ∈ Rn, then an alternative is to find the least-
squares solution x̂—if it exists—, that is,

|Ax̂− b|2 = mı́n
x∈Rn

|Ax− b|2.

Assume rank(A) = n and prove that there exists a unique global minimizer x̂,
given by

x̂ = (A⊤A)−1A⊤b.

Hint: Since rank(A) = n, then A⊤A is invertible.

7. Let a ∈ Rn, a ̸= 0. Find the unique solution to the problem

máx
x∈Rn

{a⊤x : |x|2 = 1}.

Hint: Cauchy-Schwarz inequality could be useful.
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8. (Spectral theorem) Let A ∈ Mn(R) be a symmetric matrix.

(a) Use Lagrange multipliers to show that there exists λ1 ∈ R and u1 ∈ Rn,
|u1| = 1, such that

Au1 = λ1u1

and
x ∈ Rn, |x| = 1 ⇒ x⊤Ax ≥ λ1. (1)

(b) Show that λ1 is the smallest eigenvalue of A.

(c) Show that exists λ2 ∈ R and u2 ∈ Rn, |u2| = 1, such that

Au2 = λ2u2

and
u⊤
2 u1 = 0.

Hint: Consider W1 = {x ∈ Rn | x⊤u1 = 0}, verify that Ax ∈ W1 for every x ∈ W1, and

find a minimizer u2 of x⊤Ax in some compact subset of W1.

(d) Prove that there exist an orthonormal basis {u1, . . . , un} of Rn and a vector
(λ1, . . . , λn)

⊤ such that

Auj = λjuj, 1 ≤ j ≤ n.

9. Let A ∈ Mn(R) be a symmetric matrix. Prove the following:

(a) tr(A) :=
∑n

j=1Ajj =
∑n

j=1 λj.

Hint: Recall Exercise 1.8(d) to show that AU = UΛ, where Λ is diagonal and the columns

of U are eigenvectors.

(b) A is positive semidefinite if and only if its eigenvalues are nonnegative.

(c) A is positive definite if and only if its eigenvalues are positive.

10. Let h : Rn → R be a differentiable function. Consider the problem

ı́nf{h(x) | x ∈ Rn}.

In numerical analysis, a vector v ∈ Rn \ {0} is said to be a descent direction of
f at a if Dvh(a) < 0. If ∇h(a) ̸= 0, then −∇h(a) is called the steepest-descent
direction of h at a. Justify these names by proving the following:

(a) If Dvh(a) < 0, then there exists t0 > 0 such that

h(a+ tv) < h(a) ∀t ∈ (0, t0].

(b) There exists a solution to

mı́n
v∈Rn

{Dvh(a) : |v|2 = 1},

and such a solution is given by −∇h(a)/|∇h(a)|.
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11. Consider the optimization problem

P =


min 1

3

∑n
i=1 x

3
i s.t.∑n

i=1 xi = 0,∑n
i=1 x

2
i = n.

Find a global minimizer and a global maximizer.

12. Consider the optimization problem

P =

{
max x3

1 + x3
2 + · · ·+ x3

n s.t.

x2
1 + x2

2 + · · ·+ x2
n = 1

Determine the global maximizers of the problem P ; then prove the inequality

n∑
i=1

|xi|3 ≤

(
n∑

i=1

|xi|2
)3/2

∀(x1, . . . , xn) ∈ Rn.
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