Optimization of functionals

Departament of Mathematics Cinvestav-IPN

Problem set 1

- 1. Let $f,g:S\to\mathbb{R}$ be convex functions, where $S\subseteq\mathbb{R}^n$ is convex. Show the following:
 - (a) If c is a nonnegative real number, then f + cg is convex.
 - (b) Let $J \subseteq \mathbb{R}$ be an interval such that $f(x) \in J$ for every $x \in S$. If $F: J \to \mathbb{R}$ is convex and increasing, then $F \circ f$ is convex.
- 2. Show that $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its **epigraph**

$$\{(x,y) \in \mathbb{R}^{n+1} \mid y \ge f(x)\}$$

is a convex set.

- 3. Show that f(x) = |x| is convex on \mathbb{R}^n . Is f strictly convex? What about $g(x) = |x|^2$?
- 4. Show that the set of global minimizers (which could be empty) of any convex function is convex. Prove also that strictly convex functions have at most one global minimizer.
- 5. Let $f_n: \mathbb{R}^n \to \mathbb{R}$ be a convex function for each $n \in \mathbb{N}$. Show the following assertions.
 - (a) If (f_n) converges (pointwise) to f, then f is convex.
 - (b) If $F(x) := \sup_{n>1} f_n(x)$ is finite for each $x \in J$, then F is convex.
- 6. (Least squares) Let $A \in \mathcal{M}_{m \times n}$, with m > n, and $b \in \mathbb{R}^m$. The system Ax = b usually does not have a solution $x \in \mathbb{R}^n$, then an alternative is to find the *least-squares solution* \hat{x} —if it exists—, that is,

$$|A\hat{x} - b|^2 = \min_{x \in \mathbb{R}^n} |Ax - b|^2.$$

Assume $\operatorname{rank}(A) = n$ and prove that there exists a unique global minimizer \hat{x} , given by

$$\hat{x} = (A^{\top}A)^{-1}A^{\top}b.$$

Hint: Since rank(A) = n, then $A^{\top}A$ is invertible.

7. Let $a \in \mathbb{R}^n$, $a \neq 0$. Find the unique solution to the problem

$$\max_{x \in \mathbb{R}^n} \{ a^\top x : |x|^2 = 1 \}.$$

Hint: Cauchy-Schwarz inequality could be useful.

- 8. (Spectral theorem) Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix.
 - (a) Use Lagrange multipliers to show that there exists $\lambda_1 \in \mathbb{R}$ and $u_1 \in \mathbb{R}^n$, $|u_1| = 1$, such that

$$Au_1 = \lambda_1 u_1$$

and

$$x \in \mathbb{R}^n, |x| = 1 \quad \Rightarrow \quad x^\top A x \ge \lambda_1.$$
 (1)

- (b) Show that λ_1 is the smallest eigenvalue of A.
- (c) Show that exists $\lambda_2 \in \mathbb{R}$ and $u_2 \in \mathbb{R}^n$, $|u_2| = 1$, such that

$$Au_2 = \lambda_2 u_2$$

and

$$u_2^{\top}u_1 = 0.$$

Hint: Consider $W_1 = \{x \in \mathbb{R}^n \mid x^\top u_1 = 0\}$, verify that $Ax \in W_1$ for every $x \in W_1$, and find a minimizer u_2 of $x^\top Ax$ in some compact subset of W_1 .

(d) Prove that there exist an orthonormal basis $\{u_1, \ldots, u_n\}$ of \mathbb{R}^n and a vector $(\lambda_1, \ldots, \lambda_n)^{\top}$ such that

$$Au_j = \lambda_j u_j, \quad 1 \le j \le n.$$

- 9. Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix. Prove the following:
 - (a) $tr(A) := \sum_{j=1}^{n} A_{jj} = \sum_{j=1}^{n} \lambda_{j}$.

Hint: Recall Exercise 1.8(d) to show that $AU = U\Lambda$, where Λ is diagonal and the columns of U are eigenvectors.

- (b) A is positive semidefinite if and only if its eigenvalues are nonnegative.
- (c) A is positive definite if and only if its eigenvalues are positive.
- 10. Let $h: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Consider the problem

$$\inf\{h(x) \mid x \in \mathbb{R}^n\}.$$

In numerical analysis, a vector $v \in \mathbb{R}^n \setminus \{0\}$ is said to be a descent direction of f at a if $D_v h(a) < 0$. If $\nabla h(a) \neq 0$, then $-\nabla h(a)$ is called the steepest-descent direction of h at a. Justify these names by proving the following:

(a) If $D_v h(a) < 0$, then there exists $t_0 > 0$ such that

$$h(a+tv) < h(a) \qquad \forall t \in (0, t_0].$$

(b) There exists a solution to

$$\min_{v \in \mathbb{R}^n} \{ D_v h(a) : |v|^2 = 1 \},$$

and such a solution is given by $-\nabla h(a)/|\nabla h(a)|$.

11. Consider the optimization problem

$$P = \begin{cases} \min & \frac{1}{3} \sum_{i=1}^{n} x_i^3 & s.t. \\ \sum_{i=1}^{n} x_i = 0, \\ \sum_{i=1}^{n} x_i^2 = n. \end{cases}$$

Find a global minimizer and a global maximizer.

12. Consider the optimization problem

$$P = \begin{cases} max & x_1^3 + x_2^3 + \dots + x_n^3 & s.t. \\ x_1^2 + x_2^2 + \dots + x_n^2 = 1 \end{cases}$$

Determine the global maximizers of the problem P; then prove the inequality

$$\sum_{i=1}^{n} |x_i|^3 \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{3/2} \quad \forall (x_1, \dots, x_n) \in \mathbb{R}^n.$$