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Problem set 2. Lower semicontinuous functions

Due: October 3, 2024

1. Let X be a finite-dimensional vector space. Suppose f : X → (−∞,+∞] is lsc,
bounded from below, and not identically +∞. Let ε > 0 and xε ∈ X sstisfy f (xε) ≤
inf f + ε. Prove (without using Ekeland variational principle!) that there exists x ∈ X
such that

(a) f (x) ≤ f (xε),

(b) ‖x − xε‖ ≤
√
ε, and

(c) f (x) ≤ f (x) +
√
ε‖x − x‖ for all x ∈ X.

Hint: Show that x 7→ f (x) +
√
ε‖x − x‖ is coercive.

2. Let f , g : S → R be convex functions, where S ⊆ Rn is convex. Show the following:

(a) If c is a nonnegative real number, then f + cg is convex.

(b) If F : R→ R is convex and increasing, then F ◦ f is convex.

(c) The set of minimizers (which could be empty) of any convex function is convex.
Prove also that strictly convex functions have at most one global minimizer.

(d) If f is differentiable and ∇ f (x∗) = 0, then f (x∗) ≤ f (x) for every x ∈ S .

3. (Least squares) Let A ∈ Mm×n, with m > n, and b ∈ Rm. The system Ax = b usually
does not have a solution x ∈ Rn, then an alternative is to find the least-squares solution
x̂—if it exists—, that is,

|Ax̂ − b|2 = min
x∈Rn
|Ax − b|2.

Assume rank(A) = n and prove that there exists a unique global minimizer x̂, given by

x̂ = (A>A)−1A>b.

4. (The Fundamental Theorem of Algebra) Let p(z) = anzn + . . . + a1z + a0 be a poly-
nomial with complex coefficients, an , 0 and n ≥ 2. Define the function f (z) := |p(z)|
for each z ∈ C.

(a) Prove that f has a global minimizer.
Hint: Show that f is coercive.

(b) Find explicitly one (there could be more) global minimizer of f when (i) p(z) =

a1z + . . . + anzn, that is a0 = 0, and (ii) p(z) = a0 + anzn.
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(c) Let z0 ∈ C. Explain why there exist complex numbers c0, c1, . . . , cn such that

p(z) = c0 + c1(z − z0) + . . . + cn(z − z0)n.

Hint: Write p(z) = p((z − z0) + z0) .

Further, prove that, for some k = 1, . . . , n,

p(z) = c0 + ck(z − z0)k + (z − z0)k+1q(z),

where ck , 0 and q is a polynomial.

(d) Let z0 be a global minimizer of f , t ∈ (0, 1), and w ∈ C satisfies c0 + ckwk = 0.
Suppose f (z0) > 0, that is, c0 , 0. Show that

f (z0 + tw) ≤ |c0|(1 − tk) + |tw|k+1|q(z0 + tw)|

and
t|wk+1q(z0 + tw)| < |c0|

for some t small enough.

(e) Prove the Fundamental Theorem of Algebra.

5. Let x be a local minimizer of f subject to g(x) = 0, where f : Rn → R and g : Rn → Rm

are differentiable, m < n. Assume that ∇g1(x), . . . ,∇gm(x) are linearly independent.
Use the Fritz John’s conditions to prove the existence of multipliers λ1, . . . , λm such
that

∇ f (x) + λ1∇g1(x) + . . . + λn∇gn(x) = 0.

6. Let a ∈ Rn, a , 0. Find the unique solution to the problem

max
x∈Rn
{a>x : |x|2 = 1}.

Compare with Cauchy-Schwarz inequality.

7. Let a ∈ R, b ∈ Rm, and c ∈ Rk. Assume a ≥ 0 and c ≥ 0. Find the unique solution to
the problem

max
(λ0,λ,µ)

{aλ0 + b>λ + c>µ : |(λ0, λ, µ)| = 1, λ0 ≥ 0, µ ≥ 0}.

8. (Spectral theorem). Let A ∈ Mn(R) be a symmetric matrix.

(a) Use Lagrange multipliers to show that there exists λ1 ∈ R and u1 ∈ R
n, |u1| = 1,

such that
Au1 = λ1u1

and
x ∈ Rn, |x| = 1 ⇒ x>Ax ≥ λ1.

(b) Show that λ1 is the smallest eigenvalue of A.
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(c) Show that exists λ2 ∈ R and u2 ∈ R
n, |u2| = 1, such that

Au2 = λ2u2

and
u>2 u1 = 0.

Hint: Consider W1 = {x ∈ Rn | x>u1 = 0}, verify that Ax ∈ W1 for every x ∈ W1, and find a
minimizer u2 of x>Ax in some compact subset of W1.

(d) Prove that there exist an orthonormal basis {u1, . . . , un} ofRn and a vector (λ1, . . . , λn)>

such that
Au j = λ ju j, 1 ≤ j ≤ n.

9. Let A ∈ Mn(R) be a symmetric matrix. Use the Spectral theorem to show the follow-
ing:

(a) Let (λ1, . . . , λn)> be as in Exercise 8(d). Show that

tr(A) :=
n∑

j=1

A j j =

n∑
j=1

λ j.

Hint: Show first that AU = UΛ, where Λ is diagonal.

(b) A is positive semidefinite if and only if its eigenvalues are nonnegative.

(c) A is positive definite if and only if its eigenvalues are positive.

10. Let h : Rn → R be a differentiable function. Consider the problem

inf{h(x) | x ∈ Rn}.

In numerical analysis, a vector v ∈ Rn \ {0} is said to be a descent direction of f at a if
Dvh(a) < 0. If ∇h(a) , 0, then −∇h(a) is called the steepest-descent direction of h at
a. Justify these names by proving the following:

(a) If Dvh(a) < 0, then there exists t0 > 0 such that

h(a + tv) < h(a) ∀t ∈ (0, t0].

(b) There exists a solution to
min
v∈Rn
{Dvh(a) : |v| = 1},

and such a solution is given by −Dh(a)/|Dh(a)|.
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